神经网络在工业企业能效管理中的应用

S. Klepikova
{"title":"神经网络在工业企业能效管理中的应用","authors":"S. Klepikova","doi":"10.21511/NFMTE.7.2018.04","DOIUrl":null,"url":null,"abstract":"The article is devoted to the creation of a method for using of neural networks approach in solving problems of energy efficiency management at the industrial enterprise. The method allows to obtain an approximate expected value of the energy intensity of production, depending on the values of the main factors affecting it. The multilayer perceptron was chosen as the type of neural network, synthesis of which was carried out by using the genetic algorithm. When sampling for the synthesis of a neural network, we used the results that were obtained by means of a priori ranking, correlation and regression analysis based on the statistical data of industrial enterprises in machine-building profile. The recommendations of the use of the method and the application of its results in the practical implementation at the industrial enterprise are given. Calculations based on the aforementioned method ensured a high precision of prediction of energy intensity values for industrial enterprises that were included in the sample during the synthesis of the neural network, and an acceptable error while testing on industrial enterprises from a test sample.","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural networks application in managing the energy efficiency of industrial enterprise\",\"authors\":\"S. Klepikova\",\"doi\":\"10.21511/NFMTE.7.2018.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the creation of a method for using of neural networks approach in solving problems of energy efficiency management at the industrial enterprise. The method allows to obtain an approximate expected value of the energy intensity of production, depending on the values of the main factors affecting it. The multilayer perceptron was chosen as the type of neural network, synthesis of which was carried out by using the genetic algorithm. When sampling for the synthesis of a neural network, we used the results that were obtained by means of a priori ranking, correlation and regression analysis based on the statistical data of industrial enterprises in machine-building profile. The recommendations of the use of the method and the application of its results in the practical implementation at the industrial enterprise are given. Calculations based on the aforementioned method ensured a high precision of prediction of energy intensity values for industrial enterprises that were included in the sample during the synthesis of the neural network, and an acceptable error while testing on industrial enterprises from a test sample.\",\"PeriodicalId\":300314,\"journal\":{\"name\":\"Neuro-Fuzzy Modeling Techniques in Economics\",\"volume\":\"22 6S 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-Fuzzy Modeling Techniques in Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21511/NFMTE.7.2018.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-Fuzzy Modeling Techniques in Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21511/NFMTE.7.2018.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文致力于建立一种利用神经网络方法解决工业企业能效管理问题的方法。该方法允许根据影响它的主要因素的值,获得生产能源强度的近似期望值。选择多层感知器作为神经网络类型,采用遗传算法对其进行综合。在进行神经网络综合抽样时,我们采用了基于工业企业机械制造概况统计数据的先验排序、相关分析和回归分析得到的结果。并对该方法的应用及结果在工业企业的实际应用提出了建议。基于上述方法的计算保证了神经网络合成过程中对样本中工业企业能源强度值的预测精度较高,并保证了从测试样本对工业企业进行测试时的可接受误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural networks application in managing the energy efficiency of industrial enterprise
The article is devoted to the creation of a method for using of neural networks approach in solving problems of energy efficiency management at the industrial enterprise. The method allows to obtain an approximate expected value of the energy intensity of production, depending on the values of the main factors affecting it. The multilayer perceptron was chosen as the type of neural network, synthesis of which was carried out by using the genetic algorithm. When sampling for the synthesis of a neural network, we used the results that were obtained by means of a priori ranking, correlation and regression analysis based on the statistical data of industrial enterprises in machine-building profile. The recommendations of the use of the method and the application of its results in the practical implementation at the industrial enterprise are given. Calculations based on the aforementioned method ensured a high precision of prediction of energy intensity values for industrial enterprises that were included in the sample during the synthesis of the neural network, and an acceptable error while testing on industrial enterprises from a test sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信