{"title":"商Banach代数中的孤立谱点和Koliha-Drazin可逆元及同态范围","authors":"Enrico Boasso","doi":"10.3318/PRIA.2015.115.12","DOIUrl":null,"url":null,"abstract":"In this article poles, isolated spectral points, group, Drazin and Koliha-Drazin invertible elements in the context of quotient Banach algebras or in ranges of (not necessarily continuous) homomorphism between complex unital Banach algebras will be characterized using Fredholm and Riesz Banach algebra elements. Calkin algebras on Banach and Hilbert spaces will be also considered.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges\",\"authors\":\"Enrico Boasso\",\"doi\":\"10.3318/PRIA.2015.115.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article poles, isolated spectral points, group, Drazin and Koliha-Drazin invertible elements in the context of quotient Banach algebras or in ranges of (not necessarily continuous) homomorphism between complex unital Banach algebras will be characterized using Fredholm and Riesz Banach algebra elements. Calkin algebras on Banach and Hilbert spaces will be also considered.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2015.115.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2015.115.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges
In this article poles, isolated spectral points, group, Drazin and Koliha-Drazin invertible elements in the context of quotient Banach algebras or in ranges of (not necessarily continuous) homomorphism between complex unital Banach algebras will be characterized using Fredholm and Riesz Banach algebra elements. Calkin algebras on Banach and Hilbert spaces will be also considered.