商Banach代数中的孤立谱点和Koliha-Drazin可逆元及同态范围

Enrico Boasso
{"title":"商Banach代数中的孤立谱点和Koliha-Drazin可逆元及同态范围","authors":"Enrico Boasso","doi":"10.3318/PRIA.2015.115.12","DOIUrl":null,"url":null,"abstract":"In this article poles, isolated spectral points, group, Drazin and Koliha-Drazin invertible elements in the context of quotient Banach algebras or in ranges of (not necessarily continuous) homomorphism between complex unital Banach algebras will be characterized using Fredholm and Riesz Banach algebra elements. Calkin algebras on Banach and Hilbert spaces will be also considered.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges\",\"authors\":\"Enrico Boasso\",\"doi\":\"10.3318/PRIA.2015.115.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article poles, isolated spectral points, group, Drazin and Koliha-Drazin invertible elements in the context of quotient Banach algebras or in ranges of (not necessarily continuous) homomorphism between complex unital Banach algebras will be characterized using Fredholm and Riesz Banach algebra elements. Calkin algebras on Banach and Hilbert spaces will be also considered.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2015.115.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2015.115.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文利用Fredholm和Riesz Banach代数元对商Banach代数中的极点、孤立谱点、群、Drazin和Koliha-Drazin可逆元或复一元Banach代数之间(不一定是连续的)同态范围中的可逆元进行了刻画。还将讨论Banach和Hilbert空间上的Calkin代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges
In this article poles, isolated spectral points, group, Drazin and Koliha-Drazin invertible elements in the context of quotient Banach algebras or in ranges of (not necessarily continuous) homomorphism between complex unital Banach algebras will be characterized using Fredholm and Riesz Banach algebra elements. Calkin algebras on Banach and Hilbert spaces will be also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信