Fernando I. Ablaza, Timothy Oliver D. Danganan, Bryan Paul L. Javier, Kevin S. Manalang, Denise Erica V. Montalvo, L. Ambata
{"title":"基于隐马尔可夫模型/人工神经网络(HMM/ANN)混合关键字识别框架的小词汇量菲律宾语脏话自动抑制系统","authors":"Fernando I. Ablaza, Timothy Oliver D. Danganan, Bryan Paul L. Javier, Kevin S. Manalang, Denise Erica V. Montalvo, L. Ambata","doi":"10.1109/HNICEM.2014.7016183","DOIUrl":null,"url":null,"abstract":"This paper describes an implementation of speech recognition that recognizes and suppresses ten (10) defined profane and vulgar Filipino words. The adapted speech recognition architecture was that of the Oregon Graduate Institute's (OGI) Center for Spoken Language and Learning (CSLU). It utilizes a hybrid Hidden Markov Model/ Artificial Neural Network (HMM/ANN) keyword spotting framework. The feature extraction method used was Mel-Frequency Cepstral Coefficients (MFCC). The ANN is a 3-layer feedforward neural network using Multi-Layer Perceptron (MLP). In recognizing the words, an HMM decoder was used which implemented the Viterbi Beam Search Algorithm. Whenever a profane word was recognized, it would be replaced with a constant frequency tone. The training and testing data (recordings) were gathered from 30 random (15 male and 15 female) Filipino speakers.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A small vocabulary automatic filipino speech profanity suppression system using hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) keyword spotting framework\",\"authors\":\"Fernando I. Ablaza, Timothy Oliver D. Danganan, Bryan Paul L. Javier, Kevin S. Manalang, Denise Erica V. Montalvo, L. Ambata\",\"doi\":\"10.1109/HNICEM.2014.7016183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an implementation of speech recognition that recognizes and suppresses ten (10) defined profane and vulgar Filipino words. The adapted speech recognition architecture was that of the Oregon Graduate Institute's (OGI) Center for Spoken Language and Learning (CSLU). It utilizes a hybrid Hidden Markov Model/ Artificial Neural Network (HMM/ANN) keyword spotting framework. The feature extraction method used was Mel-Frequency Cepstral Coefficients (MFCC). The ANN is a 3-layer feedforward neural network using Multi-Layer Perceptron (MLP). In recognizing the words, an HMM decoder was used which implemented the Viterbi Beam Search Algorithm. Whenever a profane word was recognized, it would be replaced with a constant frequency tone. The training and testing data (recordings) were gathered from 30 random (15 male and 15 female) Filipino speakers.\",\"PeriodicalId\":309548,\"journal\":{\"name\":\"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2014.7016183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A small vocabulary automatic filipino speech profanity suppression system using hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) keyword spotting framework
This paper describes an implementation of speech recognition that recognizes and suppresses ten (10) defined profane and vulgar Filipino words. The adapted speech recognition architecture was that of the Oregon Graduate Institute's (OGI) Center for Spoken Language and Learning (CSLU). It utilizes a hybrid Hidden Markov Model/ Artificial Neural Network (HMM/ANN) keyword spotting framework. The feature extraction method used was Mel-Frequency Cepstral Coefficients (MFCC). The ANN is a 3-layer feedforward neural network using Multi-Layer Perceptron (MLP). In recognizing the words, an HMM decoder was used which implemented the Viterbi Beam Search Algorithm. Whenever a profane word was recognized, it would be replaced with a constant frequency tone. The training and testing data (recordings) were gathered from 30 random (15 male and 15 female) Filipino speakers.