{"title":"投影-摄像系统的光度自校正","authors":"Ray Juang, A. Majumder","doi":"10.1109/CVPR.2007.383468","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for photometric self- calibration of a projector-camera system. In addition to the input transfer functions (commonly called gamma functions), we also reconstruct the spatial intensity fall-off from the center to fringe (commonly called the vignetting effect) for both the projector and camera. Projector-camera systems are becoming more popular in a large number of applications like scene capture, 3D reconstruction, and calibrating multi-projector displays. Our method enables the use of photometrically uncalibrated projectors and cameras in all such applications.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Photometric Self-Calibration of a Projector-Camera System\",\"authors\":\"Ray Juang, A. Majumder\",\"doi\":\"10.1109/CVPR.2007.383468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a method for photometric self- calibration of a projector-camera system. In addition to the input transfer functions (commonly called gamma functions), we also reconstruct the spatial intensity fall-off from the center to fringe (commonly called the vignetting effect) for both the projector and camera. Projector-camera systems are becoming more popular in a large number of applications like scene capture, 3D reconstruction, and calibrating multi-projector displays. Our method enables the use of photometrically uncalibrated projectors and cameras in all such applications.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photometric Self-Calibration of a Projector-Camera System
In this paper, we present a method for photometric self- calibration of a projector-camera system. In addition to the input transfer functions (commonly called gamma functions), we also reconstruct the spatial intensity fall-off from the center to fringe (commonly called the vignetting effect) for both the projector and camera. Projector-camera systems are becoming more popular in a large number of applications like scene capture, 3D reconstruction, and calibrating multi-projector displays. Our method enables the use of photometrically uncalibrated projectors and cameras in all such applications.