用于回归和时间序列预测的集成深度学习

Xueheng Qiu, Le Zhang, Ye Ren, P. N. Suganthan, G. Amaratunga
{"title":"用于回归和时间序列预测的集成深度学习","authors":"Xueheng Qiu, Le Zhang, Ye Ren, P. N. Suganthan, G. Amaratunga","doi":"10.1109/CIEL.2014.7015739","DOIUrl":null,"url":null,"abstract":"In this paper, for the first time, an ensemble of deep learning belief networks (DBN) is proposed for regression and time series forecasting. Another novel contribution is to aggregate the outputs from various DBNs by a support vector regression (SVR) model. We show the advantage of the proposed method on three electricity load demand datasets, one artificial time series dataset and three regression datasets over other benchmark methods.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"310","resultStr":"{\"title\":\"Ensemble deep learning for regression and time series forecasting\",\"authors\":\"Xueheng Qiu, Le Zhang, Ye Ren, P. N. Suganthan, G. Amaratunga\",\"doi\":\"10.1109/CIEL.2014.7015739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for the first time, an ensemble of deep learning belief networks (DBN) is proposed for regression and time series forecasting. Another novel contribution is to aggregate the outputs from various DBNs by a support vector regression (SVR) model. We show the advantage of the proposed method on three electricity load demand datasets, one artificial time series dataset and three regression datasets over other benchmark methods.\",\"PeriodicalId\":229765,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"310\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEL.2014.7015739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 310

摘要

本文首次提出了一种用于回归和时间序列预测的深度学习信念网络集成方法。另一个新颖的贡献是通过支持向量回归(SVR)模型聚合来自各种dbn的输出。在三个电力负荷需求数据集、一个人工时间序列数据集和三个回归数据集上证明了该方法优于其他基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble deep learning for regression and time series forecasting
In this paper, for the first time, an ensemble of deep learning belief networks (DBN) is proposed for regression and time series forecasting. Another novel contribution is to aggregate the outputs from various DBNs by a support vector regression (SVR) model. We show the advantage of the proposed method on three electricity load demand datasets, one artificial time series dataset and three regression datasets over other benchmark methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信