基于sdn的多网可调流量路由

Klement Streit, C. Schmitt, Carlo Giannelli
{"title":"基于sdn的多网可调流量路由","authors":"Klement Streit, C. Schmitt, Carlo Giannelli","doi":"10.1109/SMARTCOMP50058.2020.00030","DOIUrl":null,"url":null,"abstract":"Already available WiFi direct and upcoming 5G Device-to-Device (D2D) communication mechanisms are paving the way for the development of Mobile Ad-hoc Networks (MANET) applications. This trend involves the cooperation of nearby mobile nodes in charge of dispatching messages. In addition, the consolidation of the Fog paradigm enables innovative scenarios characterized by the interaction of MANET and Edge nodes. For instance, tourists visiting a city form a MANET to share pictures while the municipality provides Internet connectivity via Edge devices. However, it is required to address specific issues stemming from the collaborative nature of D2D communication, ranging from limited node capabilities providing multi-hop networks to unreliable connectivity due to node mobility. This paper presents the Reliable and Dynamic Routing Technique (RaDRT) solution, adopting the Software Defined Networking (SDN) approach to regulate routing of traffic flows in such Edge-MANET environments. To this purpose, RaDRT originally exploits the joint combination of three primary guidelines: 1) SDN to monitor/manage the state of the mobile network also considering different Quality of Service (QoS) requirements of concurrently running applications, 2) dynamic management of service priority to tune if and how packets are forwarded in a fine-grained per-flow differentiated manner, and 3) joined mobile/fixed solution to maximize the overall QoS also evaluating path reliability based on node mobility. This paper presents the Reliable and Dynamic Routing Technique (RaDRT) solution, adopting the Software Defined Networking (SDN) approach to regulate routing of traffic flows in such Edge-MANET environments. To this purpose, RaDRT originally exploits the joint combination of three primary guidelines: 1) SDN to monitor/manage the state of the mobile network also considering different Quality of Service (QoS) requirements of concurrently running applications, 2) dynamic management of service priority to tune if and how packets are forwarded in a fine-grained per-flow differentiated manner, and 3) joined mobile/fixed solution to maximize the overall QoS also evaluating path reliability based on node mobility.","PeriodicalId":346827,"journal":{"name":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SDN-Based Regulated Flow Routing in MANETs\",\"authors\":\"Klement Streit, C. Schmitt, Carlo Giannelli\",\"doi\":\"10.1109/SMARTCOMP50058.2020.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Already available WiFi direct and upcoming 5G Device-to-Device (D2D) communication mechanisms are paving the way for the development of Mobile Ad-hoc Networks (MANET) applications. This trend involves the cooperation of nearby mobile nodes in charge of dispatching messages. In addition, the consolidation of the Fog paradigm enables innovative scenarios characterized by the interaction of MANET and Edge nodes. For instance, tourists visiting a city form a MANET to share pictures while the municipality provides Internet connectivity via Edge devices. However, it is required to address specific issues stemming from the collaborative nature of D2D communication, ranging from limited node capabilities providing multi-hop networks to unreliable connectivity due to node mobility. This paper presents the Reliable and Dynamic Routing Technique (RaDRT) solution, adopting the Software Defined Networking (SDN) approach to regulate routing of traffic flows in such Edge-MANET environments. To this purpose, RaDRT originally exploits the joint combination of three primary guidelines: 1) SDN to monitor/manage the state of the mobile network also considering different Quality of Service (QoS) requirements of concurrently running applications, 2) dynamic management of service priority to tune if and how packets are forwarded in a fine-grained per-flow differentiated manner, and 3) joined mobile/fixed solution to maximize the overall QoS also evaluating path reliability based on node mobility. This paper presents the Reliable and Dynamic Routing Technique (RaDRT) solution, adopting the Software Defined Networking (SDN) approach to regulate routing of traffic flows in such Edge-MANET environments. To this purpose, RaDRT originally exploits the joint combination of three primary guidelines: 1) SDN to monitor/manage the state of the mobile network also considering different Quality of Service (QoS) requirements of concurrently running applications, 2) dynamic management of service priority to tune if and how packets are forwarded in a fine-grained per-flow differentiated manner, and 3) joined mobile/fixed solution to maximize the overall QoS also evaluating path reliability based on node mobility.\",\"PeriodicalId\":346827,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP50058.2020.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP50058.2020.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

已经可用的WiFi直接和即将到来的5G设备对设备(D2D)通信机制正在为移动自组织网络(MANET)应用的发展铺平道路。这种趋势涉及到负责发送消息的附近移动节点的合作。此外,Fog范式的整合使以MANET和Edge节点交互为特征的创新场景成为可能。例如,参观城市的游客组成MANET共享照片,而市政当局通过Edge设备提供互联网连接。然而,需要解决D2D通信的协作性质所产生的具体问题,从提供多跳网络的有限节点功能到由于节点移动性而导致的不可靠连接。本文提出了一种可靠动态路由技术(RaDRT)解决方案,该方案采用软件定义网络(SDN)方法来调节这种边缘manet环境下的流量路由。为此目的,RaDRT最初利用了三个主要准则的联合组合:1) SDN监控/管理移动网络的状态,同时考虑并发运行应用程序的不同服务质量(QoS)要求;2)动态管理服务优先级,以细粒度的逐流差异化方式调整数据包是否以及如何转发;3)结合移动/固定解决方案,最大限度地提高整体QoS,同时评估基于节点移动性的路径可靠性。本文提出了一种可靠动态路由技术(RaDRT)解决方案,该方案采用软件定义网络(SDN)方法来调节这种边缘manet环境下的流量路由。为此目的,RaDRT最初利用了三个主要准则的联合组合:1) SDN监控/管理移动网络的状态,同时考虑并发运行应用程序的不同服务质量(QoS)要求;2)动态管理服务优先级,以细粒度的逐流差异化方式调整数据包是否以及如何转发;3)结合移动/固定解决方案,最大限度地提高整体QoS,同时评估基于节点移动性的路径可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDN-Based Regulated Flow Routing in MANETs
Already available WiFi direct and upcoming 5G Device-to-Device (D2D) communication mechanisms are paving the way for the development of Mobile Ad-hoc Networks (MANET) applications. This trend involves the cooperation of nearby mobile nodes in charge of dispatching messages. In addition, the consolidation of the Fog paradigm enables innovative scenarios characterized by the interaction of MANET and Edge nodes. For instance, tourists visiting a city form a MANET to share pictures while the municipality provides Internet connectivity via Edge devices. However, it is required to address specific issues stemming from the collaborative nature of D2D communication, ranging from limited node capabilities providing multi-hop networks to unreliable connectivity due to node mobility. This paper presents the Reliable and Dynamic Routing Technique (RaDRT) solution, adopting the Software Defined Networking (SDN) approach to regulate routing of traffic flows in such Edge-MANET environments. To this purpose, RaDRT originally exploits the joint combination of three primary guidelines: 1) SDN to monitor/manage the state of the mobile network also considering different Quality of Service (QoS) requirements of concurrently running applications, 2) dynamic management of service priority to tune if and how packets are forwarded in a fine-grained per-flow differentiated manner, and 3) joined mobile/fixed solution to maximize the overall QoS also evaluating path reliability based on node mobility. This paper presents the Reliable and Dynamic Routing Technique (RaDRT) solution, adopting the Software Defined Networking (SDN) approach to regulate routing of traffic flows in such Edge-MANET environments. To this purpose, RaDRT originally exploits the joint combination of three primary guidelines: 1) SDN to monitor/manage the state of the mobile network also considering different Quality of Service (QoS) requirements of concurrently running applications, 2) dynamic management of service priority to tune if and how packets are forwarded in a fine-grained per-flow differentiated manner, and 3) joined mobile/fixed solution to maximize the overall QoS also evaluating path reliability based on node mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信