将对话行为的语义与语言属性联系起来:通过词汇线索的机器学习视角

A. Fang, H. Bunt, Jing Cao, Xiaoyue Liu
{"title":"将对话行为的语义与语言属性联系起来:通过词汇线索的机器学习视角","authors":"A. Fang, H. Bunt, Jing Cao, Xiaoyue Liu","doi":"10.1109/ICSC.2011.32","DOIUrl":null,"url":null,"abstract":"This paper describes a corpus-based investigation of dialogue acts. In particular, it attempts to answer questions about the empirical distribution of dialogue acts and to what extent dialogue acts can be automatically predicted from their lexical features. The Switchboard Dialogue Act Corpus is adopted and the SWBD-DAMSL tags used for automatic prediction. We show that 60-70% of the dialogue acts can be predicted from lexical features alone depending on different levels of granularity. We also present a mapping from SWBD-DAMSL tags to the tags of the new ISO standard for dialogue act annotation, as part of an ongoing investigation into the relationship between the structure and granularity of the tag set and classification accuracy. The paper concludes with discussions and suggestions for future work.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Relating the Semantics of Dialogue Acts to Linguistic Properties: A Machine Learning Perspective through Lexical Cues\",\"authors\":\"A. Fang, H. Bunt, Jing Cao, Xiaoyue Liu\",\"doi\":\"10.1109/ICSC.2011.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a corpus-based investigation of dialogue acts. In particular, it attempts to answer questions about the empirical distribution of dialogue acts and to what extent dialogue acts can be automatically predicted from their lexical features. The Switchboard Dialogue Act Corpus is adopted and the SWBD-DAMSL tags used for automatic prediction. We show that 60-70% of the dialogue acts can be predicted from lexical features alone depending on different levels of granularity. We also present a mapping from SWBD-DAMSL tags to the tags of the new ISO standard for dialogue act annotation, as part of an ongoing investigation into the relationship between the structure and granularity of the tag set and classification accuracy. The paper concludes with discussions and suggestions for future work.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文描述了一种基于语料库的对话行为调查方法。特别是,它试图回答关于对话行为的经验分布以及对话行为在多大程度上可以从其词汇特征自动预测的问题。采用总机对话动作语料库,自动预测使用SWBD-DAMSL标签。我们表明,根据不同的粒度级别,60-70%的对话行为可以仅从词汇特征中预测出来。我们还提出了从SWBD-DAMSL标签到对话行为注释新ISO标准标签的映射,作为正在进行的标签集的结构和粒度与分类准确性之间关系研究的一部分。最后,对今后的工作提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relating the Semantics of Dialogue Acts to Linguistic Properties: A Machine Learning Perspective through Lexical Cues
This paper describes a corpus-based investigation of dialogue acts. In particular, it attempts to answer questions about the empirical distribution of dialogue acts and to what extent dialogue acts can be automatically predicted from their lexical features. The Switchboard Dialogue Act Corpus is adopted and the SWBD-DAMSL tags used for automatic prediction. We show that 60-70% of the dialogue acts can be predicted from lexical features alone depending on different levels of granularity. We also present a mapping from SWBD-DAMSL tags to the tags of the new ISO standard for dialogue act annotation, as part of an ongoing investigation into the relationship between the structure and granularity of the tag set and classification accuracy. The paper concludes with discussions and suggestions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信