{"title":"弱信号通信中密集神经网络多重频移键控的软件解调","authors":"Mykola Kozlenko, V. Vialkova","doi":"10.1109/TCSET49122.2020.235501","DOIUrl":null,"url":null,"abstract":"In this paper we present the symbol and bit error rate performance of the weak signal digital communications system. We investigate orthogonal multiple frequency shift keying modulation scheme with supervised machine learning demodulation approach using simple dense end-to-end artificial neural network. We focus on the interference immunity over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.","PeriodicalId":389689,"journal":{"name":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Software Defined Demodulation of Multiple Frequency Shift Keying with Dense Neural Network for Weak Signal Communications\",\"authors\":\"Mykola Kozlenko, V. Vialkova\",\"doi\":\"10.1109/TCSET49122.2020.235501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the symbol and bit error rate performance of the weak signal digital communications system. We investigate orthogonal multiple frequency shift keying modulation scheme with supervised machine learning demodulation approach using simple dense end-to-end artificial neural network. We focus on the interference immunity over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.\",\"PeriodicalId\":389689,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)\",\"volume\":\"400 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCSET49122.2020.235501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCSET49122.2020.235501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software Defined Demodulation of Multiple Frequency Shift Keying with Dense Neural Network for Weak Signal Communications
In this paper we present the symbol and bit error rate performance of the weak signal digital communications system. We investigate orthogonal multiple frequency shift keying modulation scheme with supervised machine learning demodulation approach using simple dense end-to-end artificial neural network. We focus on the interference immunity over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.