结合网络拓扑结构改进了转录组学数据中蛋白质相互作用网络的预测

Peter E. Larsen, F. Collart, Yang Dai
{"title":"结合网络拓扑结构改进了转录组学数据中蛋白质相互作用网络的预测","authors":"Peter E. Larsen, F. Collart, Yang Dai","doi":"10.4018/jkdb.2010070101","DOIUrl":null,"url":null,"abstract":"The reconstruction of protein-protein interaction (PPI) networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These biological networks have specific topologies defined by the functional and evolutionary relationships between the proteins and the physical limitations imposed on proteins interacting in the three-dimensional space. In this paper, the authors propose a novel approach for the identification of potential protein-protein interactions based on the integration of known PPI network topology and transcriptomic data. The proposed method, Function Restricted Value Neighborhood (FRV-N), was used to reconstruct PPI networks using an experimental data set consisting of 170 yeast microarray profiles. The results of this analysis demonstrate that incorporating knowledge of interactome topology improves the ability of transcriptome analysis to reconstruct interaction networks with a high degree of biological relevance.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Incorporating Network Topology Improves Prediction of Protein Interaction Networks from Transcriptomic Data\",\"authors\":\"Peter E. Larsen, F. Collart, Yang Dai\",\"doi\":\"10.4018/jkdb.2010070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconstruction of protein-protein interaction (PPI) networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These biological networks have specific topologies defined by the functional and evolutionary relationships between the proteins and the physical limitations imposed on proteins interacting in the three-dimensional space. In this paper, the authors propose a novel approach for the identification of potential protein-protein interactions based on the integration of known PPI network topology and transcriptomic data. The proposed method, Function Restricted Value Neighborhood (FRV-N), was used to reconstruct PPI networks using an experimental data set consisting of 170 yeast microarray profiles. The results of this analysis demonstrate that incorporating knowledge of interactome topology improves the ability of transcriptome analysis to reconstruct interaction networks with a high degree of biological relevance.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2010070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2010070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用高通量实验数据重建蛋白质-蛋白质相互作用(PPI)网络是生物信息学中最具挑战性的问题之一。这些生物网络具有特定的拓扑结构,由蛋白质之间的功能和进化关系以及在三维空间中相互作用的蛋白质所施加的物理限制所定义。在本文中,作者提出了一种基于已知PPI网络拓扑结构和转录组学数据集成的潜在蛋白质-蛋白质相互作用鉴定的新方法。该方法被称为功能限制值邻域法(FRV-N),利用由170个酵母微阵列图谱组成的实验数据集来重建PPI网络。该分析的结果表明,结合相互作用组拓扑知识可以提高转录组分析的能力,以重建具有高度生物学相关性的相互作用网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Network Topology Improves Prediction of Protein Interaction Networks from Transcriptomic Data
The reconstruction of protein-protein interaction (PPI) networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These biological networks have specific topologies defined by the functional and evolutionary relationships between the proteins and the physical limitations imposed on proteins interacting in the three-dimensional space. In this paper, the authors propose a novel approach for the identification of potential protein-protein interactions based on the integration of known PPI network topology and transcriptomic data. The proposed method, Function Restricted Value Neighborhood (FRV-N), was used to reconstruct PPI networks using an experimental data set consisting of 170 yeast microarray profiles. The results of this analysis demonstrate that incorporating knowledge of interactome topology improves the ability of transcriptome analysis to reconstruct interaction networks with a high degree of biological relevance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信