知识递增神经网络群及其控制应用

Jin Lv, H. Fan, Xiang-mo Zhao
{"title":"知识递增神经网络群及其控制应用","authors":"Jin Lv, H. Fan, Xiang-mo Zhao","doi":"10.1109/CINC.2009.9","DOIUrl":null,"url":null,"abstract":"Aiming at the complex dynamic feature of large ship, an intelligent control structure based on Library-similar Knowledge-increasable Neural Network Group is presented. This compounded control structure using the dynamic knowledge-increasable learning capability of the neural network groups, solve the problems of online identification and online design of the controller, so that the high precise output tracking control of uncertain nonlinear large ship can be realized. Simulating results show that it is feasible and effective.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-increasable Neural Network Group and its Control Application\",\"authors\":\"Jin Lv, H. Fan, Xiang-mo Zhao\",\"doi\":\"10.1109/CINC.2009.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the complex dynamic feature of large ship, an intelligent control structure based on Library-similar Knowledge-increasable Neural Network Group is presented. This compounded control structure using the dynamic knowledge-increasable learning capability of the neural network groups, solve the problems of online identification and online design of the controller, so that the high precise output tracking control of uncertain nonlinear large ship can be realized. Simulating results show that it is feasible and effective.\",\"PeriodicalId\":173506,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2009.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对大型船舶复杂的动态特性,提出了一种基于类库知识递增神经网络群的智能控制结构。该复合控制结构利用神经网络群的动态知识递增学习能力,解决了控制器的在线辨识和在线设计问题,从而实现了不确定非线性大型船舶的高精度输出跟踪控制。仿真结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-increasable Neural Network Group and its Control Application
Aiming at the complex dynamic feature of large ship, an intelligent control structure based on Library-similar Knowledge-increasable Neural Network Group is presented. This compounded control structure using the dynamic knowledge-increasable learning capability of the neural network groups, solve the problems of online identification and online design of the controller, so that the high precise output tracking control of uncertain nonlinear large ship can be realized. Simulating results show that it is feasible and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信