{"title":"自主机器人桥面修复纯冲击钻井建模","authors":"Fei Liu, M. Trkov, J. Yi, N. Gucunski","doi":"10.1109/CoASE.2013.6654053","DOIUrl":null,"url":null,"abstract":"This paper presents a dynamic model of pure percussive drilling for autonomous robotic rehabilitation for concrete bridge decks. We first describe the autonomous mobile manipulator-based concrete drilling system for bridge deck rehabilitation. A dry friction-based pure percussive drilling model is then presented to describe the drilling process characteristics and to capture the influence of drilling conditions and parameters on the penetration rate. One attractive property of the proposed model is the physical interpretation of the crushing/chipping effects in percussive drilling process. The model and its properties are validated and demonstrated through extensive drilling experiments.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling of pure percussive drilling for autonomous robotic bridge decks rehabilitation\",\"authors\":\"Fei Liu, M. Trkov, J. Yi, N. Gucunski\",\"doi\":\"10.1109/CoASE.2013.6654053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a dynamic model of pure percussive drilling for autonomous robotic rehabilitation for concrete bridge decks. We first describe the autonomous mobile manipulator-based concrete drilling system for bridge deck rehabilitation. A dry friction-based pure percussive drilling model is then presented to describe the drilling process characteristics and to capture the influence of drilling conditions and parameters on the penetration rate. One attractive property of the proposed model is the physical interpretation of the crushing/chipping effects in percussive drilling process. The model and its properties are validated and demonstrated through extensive drilling experiments.\",\"PeriodicalId\":191166,\"journal\":{\"name\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoASE.2013.6654053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6654053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of pure percussive drilling for autonomous robotic bridge decks rehabilitation
This paper presents a dynamic model of pure percussive drilling for autonomous robotic rehabilitation for concrete bridge decks. We first describe the autonomous mobile manipulator-based concrete drilling system for bridge deck rehabilitation. A dry friction-based pure percussive drilling model is then presented to describe the drilling process characteristics and to capture the influence of drilling conditions and parameters on the penetration rate. One attractive property of the proposed model is the physical interpretation of the crushing/chipping effects in percussive drilling process. The model and its properties are validated and demonstrated through extensive drilling experiments.