实时列车计数及数字识别算法

A. Vavilin, A. Lomov, Titkov Roman
{"title":"实时列车计数及数字识别算法","authors":"A. Vavilin, A. Lomov, Titkov Roman","doi":"10.1109/IWIS56333.2022.9920835","DOIUrl":null,"url":null,"abstract":"In this work we present an efficient solution for counting train wagons and recognizing their numbers using deep learning computer vision models. The proposed method is a good alternative for radio-frequency identification (RFID) method in terms of low cost and ease of use. Our system shows 99% accuracy in real-world scenarios, including corrupted wagon numbers and night shooting conditions. At the same time, the proposed method is capable to process video-stream in real-time speed without GPU-acceleration.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Train Wagon Counting and Number Recognition Algorithm\",\"authors\":\"A. Vavilin, A. Lomov, Titkov Roman\",\"doi\":\"10.1109/IWIS56333.2022.9920835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present an efficient solution for counting train wagons and recognizing their numbers using deep learning computer vision models. The proposed method is a good alternative for radio-frequency identification (RFID) method in terms of low cost and ease of use. Our system shows 99% accuracy in real-world scenarios, including corrupted wagon numbers and night shooting conditions. At the same time, the proposed method is capable to process video-stream in real-time speed without GPU-acceleration.\",\"PeriodicalId\":340399,\"journal\":{\"name\":\"2022 International Workshop on Intelligent Systems (IWIS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Workshop on Intelligent Systems (IWIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWIS56333.2022.9920835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种有效的解决方案,用于计算火车车厢并使用深度学习计算机视觉模型识别它们的数量。该方法具有成本低、易于使用等优点,是射频识别(RFID)方法的一个很好的替代方案。我们的系统在真实场景中显示出99%的准确率,包括损坏的车号和夜间射击条件。同时,该方法能够在不需要gpu加速的情况下实时处理视频流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Train Wagon Counting and Number Recognition Algorithm
In this work we present an efficient solution for counting train wagons and recognizing their numbers using deep learning computer vision models. The proposed method is a good alternative for radio-frequency identification (RFID) method in terms of low cost and ease of use. Our system shows 99% accuracy in real-world scenarios, including corrupted wagon numbers and night shooting conditions. At the same time, the proposed method is capable to process video-stream in real-time speed without GPU-acceleration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信