多样性驱动的自动化形式化验证

E. First, Yuriy Brun
{"title":"多样性驱动的自动化形式化验证","authors":"E. First, Yuriy Brun","doi":"10.1145/3510003.3510138","DOIUrl":null,"url":null,"abstract":"Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mech-anism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that CoqHammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40×. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.","PeriodicalId":202896,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Diversity-Driven Automated Formal Verification\",\"authors\":\"E. First, Yuriy Brun\",\"doi\":\"10.1145/3510003.3510138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mech-anism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that CoqHammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40×. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.\",\"PeriodicalId\":202896,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510003.3510138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510003.3510138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

正式验证的正确性是软件系统最理想的特性之一。但是,尽管通过交互式定理证明器(例如Coq)取得了巨大的进步,为验证编写证明脚本仍然是最费力的(并且通常是非常困难的)软件开发活动之一。最近的工作创建了自动合成证明或证明脚本的工具。例如,CoqHammer可以通过使用预先计算的事实进行推理,完全自动证明26.6%的定理,而TacTok和ASTactic使用机器学习对证明脚本进行建模,然后通过证明脚本空间进行偏见搜索,分别可以证明12.9%和12.3%的定理。此外,这三种工具是高度互补的;他们一起可以完全自动地证明30.4%的定理。我们的关键见解是,对学习过程的控制可以产生多样化的模型集,而且,由于证明综合的独特性(定理证明者的存在,一个准确判断证明正确性的神谕),这种多样性可以显著提高这些工具的证明能力。因此,我们开发了Diva,它使用TacTok和ASTactic的搜索机制的多种模型集来证明21.7%的定理。也就是说,Diva比TacTok多证明68%的定理,比ASTactic多证明77%的定理。作为CoqHammer的补充,Diva证明了CoqHammer没有证明的781个定理(27%的附加值),还有364个定理没有现有工具自动证明。Diva和CoqHammer一起证明了33.8%的定理,这是迄今为止最大的比例。我们探索了学习多样化模型的九个维度,并确定了哪些维度导致最有用的多样性。此外,我们开发了一种优化,将Diva的执行速度提高了40倍。我们的研究引入了一个全新的想法,即在机器学习中使用多样性来提高最先进的证明脚本合成技术的能力,并通过经验证明,在122个开源软件项目的68K个定理的数据集上,这种改进是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity-Driven Automated Formal Verification
Formally verified correctness is one of the most desirable properties of software systems. But despite great progress made via interactive theorem provers, such as Coq, writing proof scripts for verification remains one of the most effort-intensive (and often prohibitively difficult) software development activities. Recent work has created tools that automatically synthesize proofs or proof scripts. For example, CoqHammer can prove 26.6% of theorems completely automatically by reasoning using precomputed facts, while TacTok and ASTactic, which use machine learning to model proof scripts and then perform biased search through the proof-script space, can prove 12.9% and 12.3% of the theorems, respectively. Further, these three tools are highly complementary; together, they can prove 30.4% of the theorems fully automatically. Our key insight is that control over the learning process can produce a diverse set of models, and that, due to the unique nature of proof synthesis (the existence of the theorem prover, an oracle that infallibly judges a proof's correctness), this diversity can significantly improve these tools' proving power. Accordingly, we develop Diva, which uses a diverse set of models with TacTok's and ASTactic's search mech-anism to prove 21.7% of the theorems. That is, Diva proves 68% more theorems than TacTok and 77% more than ASTactic. Complementary to CoqHammer, Diva proves 781 theorems (27% added value) that CoqHammer does not, and 364 theorems no existing tool has proved automatically. Together with CoqHammer, Diva proves 33.8% of the theorems, the largest fraction to date. We explore nine dimensions for learning diverse models, and identify which dimensions lead to the most useful diversity. Further, we develop an optimization to speed up Diva's execution by 40×. Our study introduces a completely new idea for using diversity in machine learning to improve the power of state-of-the-art proof-script synthesis techniques, and empirically demonstrates that the improvement is significant on a dataset of 68K theorems from 122 open-source software projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信