一种用于微波元件参数化建模的增强自动神经模型生成算法

W. Na, Wenyuan Liu, Wanrong Zhang
{"title":"一种用于微波元件参数化建模的增强自动神经模型生成算法","authors":"W. Na, Wenyuan Liu, Wanrong Zhang","doi":"10.1109/IWS49314.2020.9359924","DOIUrl":null,"url":null,"abstract":"This paper presents an enhanced automated model generation (AMG) algorithm using neural networks (NNs). AMG performs automated sampling of training/testing data and automated NN structure adaptation to obtain a compact NN model of user-required accuracy with suitable amount of data. The proposed enhanced AMG performs data sampling in a stage-wise manner. In each stage, instead of sampling along all dimensions of the input space, the proposed AMG distinguishes the input dimension which influences the nonlinearity of the model behavior most in current stage, then generates additional training samples along this input dimension. Compared to existing AMG, the proposed algorithm can reduce the amount of data needed for NN modeling, especially in the case of multidimensional parametric modeling of microwave devices. Examples including automated modeling of MOSFET and bandpass filter are presented to demonstrate the validity of the proposed AMG.","PeriodicalId":301959,"journal":{"name":"2020 IEEE MTT-S International Wireless Symposium (IWS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Automated Neuro-Model Generation Algorithm for Parametric Modeling of Microwave Components\",\"authors\":\"W. Na, Wenyuan Liu, Wanrong Zhang\",\"doi\":\"10.1109/IWS49314.2020.9359924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an enhanced automated model generation (AMG) algorithm using neural networks (NNs). AMG performs automated sampling of training/testing data and automated NN structure adaptation to obtain a compact NN model of user-required accuracy with suitable amount of data. The proposed enhanced AMG performs data sampling in a stage-wise manner. In each stage, instead of sampling along all dimensions of the input space, the proposed AMG distinguishes the input dimension which influences the nonlinearity of the model behavior most in current stage, then generates additional training samples along this input dimension. Compared to existing AMG, the proposed algorithm can reduce the amount of data needed for NN modeling, especially in the case of multidimensional parametric modeling of microwave devices. Examples including automated modeling of MOSFET and bandpass filter are presented to demonstrate the validity of the proposed AMG.\",\"PeriodicalId\":301959,\"journal\":{\"name\":\"2020 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWS49314.2020.9359924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS49314.2020.9359924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于神经网络的增强自动模型生成(AMG)算法。AMG执行训练/测试数据的自动采样和自动神经网络结构自适应,以获得具有适当数据量的用户要求精度的紧凑神经网络模型。提出的增强AMG以分阶段的方式执行数据采样。在每个阶段,AMG不是沿着输入空间的所有维度采样,而是区分当前阶段对模型行为非线性影响最大的输入维度,然后沿着该输入维度生成额外的训练样本。与现有的AMG算法相比,该算法可以减少神经网络建模所需的数据量,特别是在微波器件多维参数建模的情况下。通过对MOSFET和带通滤波器的自动建模,验证了AMG的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Automated Neuro-Model Generation Algorithm for Parametric Modeling of Microwave Components
This paper presents an enhanced automated model generation (AMG) algorithm using neural networks (NNs). AMG performs automated sampling of training/testing data and automated NN structure adaptation to obtain a compact NN model of user-required accuracy with suitable amount of data. The proposed enhanced AMG performs data sampling in a stage-wise manner. In each stage, instead of sampling along all dimensions of the input space, the proposed AMG distinguishes the input dimension which influences the nonlinearity of the model behavior most in current stage, then generates additional training samples along this input dimension. Compared to existing AMG, the proposed algorithm can reduce the amount of data needed for NN modeling, especially in the case of multidimensional parametric modeling of microwave devices. Examples including automated modeling of MOSFET and bandpass filter are presented to demonstrate the validity of the proposed AMG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信