基于随机森林分类的帕金森病步态冻结用户独立检测

Amruta Meshram, B. Rai
{"title":"基于随机森林分类的帕金森病步态冻结用户独立检测","authors":"Amruta Meshram, B. Rai","doi":"10.4018/IJBDAH.2019010105","DOIUrl":null,"url":null,"abstract":"Freezing of gait (FOG) is a gait impairment which occurs in Parkinson's disease (PD) patients. As PD progresses, the patient is unable to perform locomotion normally. This increases the risk of falls and adversely affects the patient's quality of life. In this article, a user-independent method has been proposed to detect FOG events in PD patients. The proposed method is divided into three phases. Phase-1 extracts the statistical features from a FOG dataset. Phase-2 divides the data into two clusters based on FOG events. Phase-3 selects significant factors, using a randomized block design with replication. A Random Forest model is built using a combination of significant factors obtained from the design of experiments. The proposed method classifies FOG events with an average sensitivity up to 94.33% and specificity up to 92.77%. This model can be integrated along with non-pharmaceutical treatments to generate sensory-motor feedback at the onset of a FOG event.","PeriodicalId":230045,"journal":{"name":"Research Anthology on Diagnosing and Treating Neurocognitive Disorders","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"User-Independent Detection for Freezing of Gait in Parkinson's Disease Using Random Forest Classification\",\"authors\":\"Amruta Meshram, B. Rai\",\"doi\":\"10.4018/IJBDAH.2019010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freezing of gait (FOG) is a gait impairment which occurs in Parkinson's disease (PD) patients. As PD progresses, the patient is unable to perform locomotion normally. This increases the risk of falls and adversely affects the patient's quality of life. In this article, a user-independent method has been proposed to detect FOG events in PD patients. The proposed method is divided into three phases. Phase-1 extracts the statistical features from a FOG dataset. Phase-2 divides the data into two clusters based on FOG events. Phase-3 selects significant factors, using a randomized block design with replication. A Random Forest model is built using a combination of significant factors obtained from the design of experiments. The proposed method classifies FOG events with an average sensitivity up to 94.33% and specificity up to 92.77%. This model can be integrated along with non-pharmaceutical treatments to generate sensory-motor feedback at the onset of a FOG event.\",\"PeriodicalId\":230045,\"journal\":{\"name\":\"Research Anthology on Diagnosing and Treating Neurocognitive Disorders\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Diagnosing and Treating Neurocognitive Disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJBDAH.2019010105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Diagnosing and Treating Neurocognitive Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJBDAH.2019010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

步态冻结(FOG)是帕金森病(PD)患者的一种步态障碍。随着帕金森病的进展,患者无法正常进行运动。这增加了跌倒的风险,并对患者的生活质量产生不利影响。本文提出了一种与用户无关的方法来检测PD患者的FOG事件。该方法分为三个阶段。阶段1从FOG数据集中提取统计特征。phase 2基于FOG事件将数据分成两个簇。第三阶段选择重要因素,采用随机区组设计和复制。随机森林模型是利用从实验设计中获得的显著因子的组合来建立的。该方法对雾事件的平均灵敏度为94.33%,特异度为92.77%。该模型可以与非药物治疗相结合,在FOG事件发生时产生感觉-运动反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User-Independent Detection for Freezing of Gait in Parkinson's Disease Using Random Forest Classification
Freezing of gait (FOG) is a gait impairment which occurs in Parkinson's disease (PD) patients. As PD progresses, the patient is unable to perform locomotion normally. This increases the risk of falls and adversely affects the patient's quality of life. In this article, a user-independent method has been proposed to detect FOG events in PD patients. The proposed method is divided into three phases. Phase-1 extracts the statistical features from a FOG dataset. Phase-2 divides the data into two clusters based on FOG events. Phase-3 selects significant factors, using a randomized block design with replication. A Random Forest model is built using a combination of significant factors obtained from the design of experiments. The proposed method classifies FOG events with an average sensitivity up to 94.33% and specificity up to 92.77%. This model can be integrated along with non-pharmaceutical treatments to generate sensory-motor feedback at the onset of a FOG event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信