实时内镜图像分析算法

Kadushnikov Radi, Studenok Sergey, M. Vyacheslav
{"title":"实时内镜图像分析算法","authors":"Kadushnikov Radi, Studenok Sergey, M. Vyacheslav","doi":"10.1145/3033288.3033350","DOIUrl":null,"url":null,"abstract":"New algorithm for the real time processing of narrow--band endoscopic images with a highly productive distributed intellectual analytic decision--making system for multiscale endoscopic diagnostics is presented. The algorithm uses scale--invariant feature transform detector, computing skeletons of gastric mucosa pit-patterns, \"Bag of visual words\" (\"Bag of features\") method, and K--means method for key points. Resulting algorithm is completely automated, performs real time analysis, and does not require preliminary selection of interest area. Image classification accuracy exceeds 78%. The use of neural network recognition improves image classification accuracy up to 93%.","PeriodicalId":253625,"journal":{"name":"International Conference on Network, Communication and Computing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Real Time Endoscopic Image Analysis Algorithm\",\"authors\":\"Kadushnikov Radi, Studenok Sergey, M. Vyacheslav\",\"doi\":\"10.1145/3033288.3033350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New algorithm for the real time processing of narrow--band endoscopic images with a highly productive distributed intellectual analytic decision--making system for multiscale endoscopic diagnostics is presented. The algorithm uses scale--invariant feature transform detector, computing skeletons of gastric mucosa pit-patterns, \\\"Bag of visual words\\\" (\\\"Bag of features\\\") method, and K--means method for key points. Resulting algorithm is completely automated, performs real time analysis, and does not require preliminary selection of interest area. Image classification accuracy exceeds 78%. The use of neural network recognition improves image classification accuracy up to 93%.\",\"PeriodicalId\":253625,\"journal\":{\"name\":\"International Conference on Network, Communication and Computing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Network, Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3033288.3033350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3033288.3033350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于多尺度内镜诊断的高效分布式智能分析决策系统的窄带内镜图像实时处理算法。该算法采用尺度不变特征变换检测器、计算胃黏膜坑纹骨架、“Bag of visual words”(“Bag of features”)法、关键点K- means法。生成的算法完全自动化,进行实时分析,不需要预先选择感兴趣的区域。图像分类准确率超过78%。利用神经网络识别将图像分类准确率提高到93%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Real Time Endoscopic Image Analysis Algorithm
New algorithm for the real time processing of narrow--band endoscopic images with a highly productive distributed intellectual analytic decision--making system for multiscale endoscopic diagnostics is presented. The algorithm uses scale--invariant feature transform detector, computing skeletons of gastric mucosa pit-patterns, "Bag of visual words" ("Bag of features") method, and K--means method for key points. Resulting algorithm is completely automated, performs real time analysis, and does not require preliminary selection of interest area. Image classification accuracy exceeds 78%. The use of neural network recognition improves image classification accuracy up to 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信