将嵌套蒙特卡罗与局部搜索相结合解决MaxSAT问题

Hui Wang, Abdallah Saffidine, T. Cazenave
{"title":"将嵌套蒙特卡罗与局部搜索相结合解决MaxSAT问题","authors":"Hui Wang, Abdallah Saffidine, T. Cazenave","doi":"10.48550/arXiv.2302.13225","DOIUrl":null,"url":null,"abstract":"Recent work proposed the UCTMAXSAT algorithm to address Maximum Satisfiability Problems (MaxSAT) and shown improved performance over pure Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of purely random playouts. In this work, we introduce two algorithmic variations over UCTMAXSAT. We carry an empirical analysis on MaxSAT benchmarks from recent competitions and establish that both ideas lead to performance improvements. First, a nesting of the tree search inspired by the Nested Monte Carlo Search algorithm is effective on most instance types in the benchmark. Second, we observe that using a static flip limit in SLS, the ideal budget depends heavily on the instance size and we propose to set it dynamically. We show that it is a robust way to achieve comparable performance on a variety of instances without requiring additional tuning.","PeriodicalId":430111,"journal":{"name":"Learning and Intelligent Optimization","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search\",\"authors\":\"Hui Wang, Abdallah Saffidine, T. Cazenave\",\"doi\":\"10.48550/arXiv.2302.13225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work proposed the UCTMAXSAT algorithm to address Maximum Satisfiability Problems (MaxSAT) and shown improved performance over pure Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of purely random playouts. In this work, we introduce two algorithmic variations over UCTMAXSAT. We carry an empirical analysis on MaxSAT benchmarks from recent competitions and establish that both ideas lead to performance improvements. First, a nesting of the tree search inspired by the Nested Monte Carlo Search algorithm is effective on most instance types in the benchmark. Second, we observe that using a static flip limit in SLS, the ideal budget depends heavily on the instance size and we propose to set it dynamically. We show that it is a robust way to achieve comparable performance on a variety of instances without requiring additional tuning.\",\"PeriodicalId\":430111,\"journal\":{\"name\":\"Learning and Intelligent Optimization\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Intelligent Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.13225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Intelligent Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.13225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究提出了UCTMAXSAT算法来解决最大可满足性问题(MaxSAT),并显示了比纯随机局部搜索算法(SLS)更好的性能。UCTMAXSAT是基于蒙特卡罗树搜索,但它使用SLS而不是纯粹的随机播放。在这项工作中,我们介绍了UCTMAXSAT的两种算法变体。我们从最近的比赛中对MaxSAT基准进行了实证分析,并确定这两种想法都会导致性能提高。首先,受嵌套蒙特卡罗搜索算法启发的树搜索嵌套对基准测试中的大多数实例类型都是有效的。其次,我们观察到,在SLS中使用静态翻转限制,理想的预算严重依赖于实例大小,我们建议动态设置它。我们表明,这是一种健壮的方法,可以在各种实例上实现相当的性能,而无需额外的调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Tackling MaxSAT by Combining Nested Monte Carlo with Local Search
Recent work proposed the UCTMAXSAT algorithm to address Maximum Satisfiability Problems (MaxSAT) and shown improved performance over pure Stochastic Local Search algorithms (SLS). UCTMAXSAT is based on Monte Carlo Tree Search but it uses SLS instead of purely random playouts. In this work, we introduce two algorithmic variations over UCTMAXSAT. We carry an empirical analysis on MaxSAT benchmarks from recent competitions and establish that both ideas lead to performance improvements. First, a nesting of the tree search inspired by the Nested Monte Carlo Search algorithm is effective on most instance types in the benchmark. Second, we observe that using a static flip limit in SLS, the ideal budget depends heavily on the instance size and we propose to set it dynamically. We show that it is a robust way to achieve comparable performance on a variety of instances without requiring additional tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信