基于移动传感器网络的平流扩散过程协同参数辨识

Jie You, Yufei Zhang, Mingchen Li, Kun Su, Fumin Zhang, Wencen Wu
{"title":"基于移动传感器网络的平流扩散过程协同参数辨识","authors":"Jie You, Yufei Zhang, Mingchen Li, Kun Su, Fumin Zhang, Wencen Wu","doi":"10.23919/ACC.2017.7963445","DOIUrl":null,"url":null,"abstract":"Online parameter identification of advection-diffusion processes is performed using a mobile sensor network. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensor network so that the temporal variations of the field values can be estimated. Utilizing the state estimates from the constrained cooperative Kalman filter, a recursive least square (RLS) algorithm is designed to estimate the unknown parameters of the advection-diffusion process. We provide bias analysis of the RLS in the paper. In addition to validating the proposed algorithm in simulated advection-diffusion fields, we build a controllable CO2 advection-diffusion field in a lab and design a sensor grid that collects the field concentration over time to allow the validation of the proposed algorithm in the CO2 field. Experimental results demonstrate robustness of the algorithm under realistic uncertainties and disturbances.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cooperative parameter identification of advection-diffusion processes using a mobile sensor network\",\"authors\":\"Jie You, Yufei Zhang, Mingchen Li, Kun Su, Fumin Zhang, Wencen Wu\",\"doi\":\"10.23919/ACC.2017.7963445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online parameter identification of advection-diffusion processes is performed using a mobile sensor network. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensor network so that the temporal variations of the field values can be estimated. Utilizing the state estimates from the constrained cooperative Kalman filter, a recursive least square (RLS) algorithm is designed to estimate the unknown parameters of the advection-diffusion process. We provide bias analysis of the RLS in the paper. In addition to validating the proposed algorithm in simulated advection-diffusion fields, we build a controllable CO2 advection-diffusion field in a lab and design a sensor grid that collects the field concentration over time to allow the validation of the proposed algorithm in the CO2 field. Experimental results demonstrate robustness of the algorithm under realistic uncertainties and disturbances.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用移动传感器网络对平流扩散过程进行了在线参数辨识。提出了一种约束协同卡尔曼滤波器,用于估计移动传感器网络沿轨迹的场值和梯度,从而估计场值的时间变化。利用约束协同卡尔曼滤波的状态估计,设计了一种递推最小二乘算法来估计平流扩散过程的未知参数。本文对RLS进行了偏倚分析。除了在模拟的平流扩散场中验证所提出的算法外,我们还在实验室中建立了一个可控的二氧化碳平流扩散场,并设计了一个传感器网格来收集随时间变化的场浓度,以便在二氧化碳场中验证所提出的算法。实验结果证明了该算法在现实不确定性和干扰下的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative parameter identification of advection-diffusion processes using a mobile sensor network
Online parameter identification of advection-diffusion processes is performed using a mobile sensor network. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensor network so that the temporal variations of the field values can be estimated. Utilizing the state estimates from the constrained cooperative Kalman filter, a recursive least square (RLS) algorithm is designed to estimate the unknown parameters of the advection-diffusion process. We provide bias analysis of the RLS in the paper. In addition to validating the proposed algorithm in simulated advection-diffusion fields, we build a controllable CO2 advection-diffusion field in a lab and design a sensor grid that collects the field concentration over time to allow the validation of the proposed algorithm in the CO2 field. Experimental results demonstrate robustness of the algorithm under realistic uncertainties and disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信