揭示基因网络的Turbo数据集成

Yufei Huang, Yufang Yin
{"title":"揭示基因网络的Turbo数据集成","authors":"Yufei Huang, Yufang Yin","doi":"10.1109/LSSA.2006.250397","DOIUrl":null,"url":null,"abstract":"Data integration is an important task in the gene network research. In this paper, the integration of two microarray datasets for uncovering gene networks is considered. The premise of data integration is that different datasets all carry information about the common networks of interest. Thus, through data fusion, the authors hope to combine information from different sources to gain improved understanding about the networks. Inspired by the similarity between the data integration problem and turbo decoding in wireless communications, a Bayesian data integration framework based on a turbo approach was proposed. The proposed algorithm was tested on two microarray datasets of 10 genes in the yeast cell cycle","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Turbo Data Integration for Uncovering Gene Networks\",\"authors\":\"Yufei Huang, Yufang Yin\",\"doi\":\"10.1109/LSSA.2006.250397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data integration is an important task in the gene network research. In this paper, the integration of two microarray datasets for uncovering gene networks is considered. The premise of data integration is that different datasets all carry information about the common networks of interest. Thus, through data fusion, the authors hope to combine information from different sources to gain improved understanding about the networks. Inspired by the similarity between the data integration problem and turbo decoding in wireless communications, a Bayesian data integration framework based on a turbo approach was proposed. The proposed algorithm was tested on two microarray datasets of 10 genes in the yeast cell cycle\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据集成是基因网络研究中的一项重要任务。在本文中,考虑了两个微阵列数据集的整合,以揭示基因网络。数据集成的前提是不同的数据集都携带有关共同感兴趣的网络的信息。因此,通过数据融合,作者希望将来自不同来源的信息结合起来,以提高对网络的理解。针对无线通信中数据集成问题与turbo解码的相似性,提出了一种基于turbo方法的贝叶斯数据集成框架。该算法在酵母细胞周期中10个基因的两个微阵列数据集上进行了测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbo Data Integration for Uncovering Gene Networks
Data integration is an important task in the gene network research. In this paper, the integration of two microarray datasets for uncovering gene networks is considered. The premise of data integration is that different datasets all carry information about the common networks of interest. Thus, through data fusion, the authors hope to combine information from different sources to gain improved understanding about the networks. Inspired by the similarity between the data integration problem and turbo decoding in wireless communications, a Bayesian data integration framework based on a turbo approach was proposed. The proposed algorithm was tested on two microarray datasets of 10 genes in the yeast cell cycle
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信