{"title":"用一种精确的高速延迟测量方法对抗fpga上的工艺变化","authors":"Justin S. J. Wong, P. Cheung, N. P. Sedcole","doi":"10.1109/FPL.2008.4630046","DOIUrl":null,"url":null,"abstract":"The goal of this PhD project is to devise a way to combat the effect of process variation on propagation delays in modern FPGAs. Through our research, we have devised a novel measurement method that is capable of measuring the delays of components on FPGAs with picosecond timing resolution and fine spatial granularity. The method avoids the use of external test equipment and able to measure stochastic delay variability, which is becoming increasingly significant. The aim is to exhaustively test FPGA components based on this method and use the results to optimise the placement and routing of circuits in FPGAs to maximise performance under the negative influence of process variation.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combating process variation on FPGAS with a precise at-speed delay measurement method\",\"authors\":\"Justin S. J. Wong, P. Cheung, N. P. Sedcole\",\"doi\":\"10.1109/FPL.2008.4630046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this PhD project is to devise a way to combat the effect of process variation on propagation delays in modern FPGAs. Through our research, we have devised a novel measurement method that is capable of measuring the delays of components on FPGAs with picosecond timing resolution and fine spatial granularity. The method avoids the use of external test equipment and able to measure stochastic delay variability, which is becoming increasingly significant. The aim is to exhaustively test FPGA components based on this method and use the results to optimise the placement and routing of circuits in FPGAs to maximise performance under the negative influence of process variation.\",\"PeriodicalId\":137963,\"journal\":{\"name\":\"2008 International Conference on Field Programmable Logic and Applications\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Field Programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2008.4630046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4630046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combating process variation on FPGAS with a precise at-speed delay measurement method
The goal of this PhD project is to devise a way to combat the effect of process variation on propagation delays in modern FPGAs. Through our research, we have devised a novel measurement method that is capable of measuring the delays of components on FPGAs with picosecond timing resolution and fine spatial granularity. The method avoids the use of external test equipment and able to measure stochastic delay variability, which is becoming increasingly significant. The aim is to exhaustively test FPGA components based on this method and use the results to optimise the placement and routing of circuits in FPGAs to maximise performance under the negative influence of process variation.