Bifrost:可重构DNN加速器的端到端评估和优化

Axel Stjerngren, Perry Gibson, José Cano
{"title":"Bifrost:可重构DNN加速器的端到端评估和优化","authors":"Axel Stjerngren, Perry Gibson, José Cano","doi":"10.48550/arXiv.2204.12418","DOIUrl":null,"url":null,"abstract":"Reconfigurable accelerators for deep neural networks (DNNs) promise to improve performance such as inference latency. STONNE is the first cycle-accurate simulator for reconfigurable DNN inference accelerators which allows for the exploration of accelerator designs and configuration space. However, preparing models for evaluation and exploring configuration space in STONNE is a manual developer-time-consuming process, which is a barrier for research. This paper introduces Bifrost, an end-to-end framework for the evaluation and optimization of reconfigurable DNN inference accelerators. Bifrost operates as a frontend for STONNE and leverages the TVM deep learning compiler stack to parse models and automate offloading of accelerated computations. We discuss Bifrost’s advantages over STONNE and other tools, and evaluate the MAERI and SIGMA architectures using Bifrost. Additionally, Bifrost introduces a module leveraging AutoTVM to efficiently explore accelerator designs and datatlow mapping space to optimize performance. This is demonstrated by tuning the MAERI architecture and generating efficient datatlow mappings for AlexNet, obtaining an average speedup of $50\\times$ for the convolutional layers and $11\\times$ for the fully connected layers. Our code is available at www.github.com/gicLAB/bifrost.","PeriodicalId":115391,"journal":{"name":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bifrost: End-to-End Evaluation and optimization of Reconfigurable DNN Accelerators\",\"authors\":\"Axel Stjerngren, Perry Gibson, José Cano\",\"doi\":\"10.48550/arXiv.2204.12418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable accelerators for deep neural networks (DNNs) promise to improve performance such as inference latency. STONNE is the first cycle-accurate simulator for reconfigurable DNN inference accelerators which allows for the exploration of accelerator designs and configuration space. However, preparing models for evaluation and exploring configuration space in STONNE is a manual developer-time-consuming process, which is a barrier for research. This paper introduces Bifrost, an end-to-end framework for the evaluation and optimization of reconfigurable DNN inference accelerators. Bifrost operates as a frontend for STONNE and leverages the TVM deep learning compiler stack to parse models and automate offloading of accelerated computations. We discuss Bifrost’s advantages over STONNE and other tools, and evaluate the MAERI and SIGMA architectures using Bifrost. Additionally, Bifrost introduces a module leveraging AutoTVM to efficiently explore accelerator designs and datatlow mapping space to optimize performance. This is demonstrated by tuning the MAERI architecture and generating efficient datatlow mappings for AlexNet, obtaining an average speedup of $50\\\\times$ for the convolutional layers and $11\\\\times$ for the fully connected layers. Our code is available at www.github.com/gicLAB/bifrost.\",\"PeriodicalId\":115391,\"journal\":{\"name\":\"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.12418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.12418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度神经网络(dnn)的可重构加速器有望提高推理延迟等性能。STONNE是第一个周期精确的模拟器,用于可重构DNN推理加速器,它允许探索加速器设计和配置空间。然而,在STONNE中为评估和探索配置空间准备模型是一个手工开发耗时的过程,这是研究的一个障碍。本文介绍了Bifrost,一个用于评估和优化可重构深度神经网络推理加速器的端到端框架。Bifrost作为STONNE的前端,利用TVM深度学习编译器堆栈解析模型并自动卸载加速计算。我们讨论了Bifrost相对于stone和其他工具的优势,并使用Bifrost评估了MAERI和SIGMA架构。此外,Bifrost还引入了一个利用AutoTVM的模块,可以有效地探索加速器设计和数据低映射空间,以优化性能。通过调整MAERI架构并为AlexNet生成高效的数据低映射来证明这一点,卷积层的平均加速为$50\times$,完全连接层的平均加速为$11\times$。我们的代码可在www.github.com/gicLAB/bifrost上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifrost: End-to-End Evaluation and optimization of Reconfigurable DNN Accelerators
Reconfigurable accelerators for deep neural networks (DNNs) promise to improve performance such as inference latency. STONNE is the first cycle-accurate simulator for reconfigurable DNN inference accelerators which allows for the exploration of accelerator designs and configuration space. However, preparing models for evaluation and exploring configuration space in STONNE is a manual developer-time-consuming process, which is a barrier for research. This paper introduces Bifrost, an end-to-end framework for the evaluation and optimization of reconfigurable DNN inference accelerators. Bifrost operates as a frontend for STONNE and leverages the TVM deep learning compiler stack to parse models and automate offloading of accelerated computations. We discuss Bifrost’s advantages over STONNE and other tools, and evaluate the MAERI and SIGMA architectures using Bifrost. Additionally, Bifrost introduces a module leveraging AutoTVM to efficiently explore accelerator designs and datatlow mapping space to optimize performance. This is demonstrated by tuning the MAERI architecture and generating efficient datatlow mappings for AlexNet, obtaining an average speedup of $50\times$ for the convolutional layers and $11\times$ for the fully connected layers. Our code is available at www.github.com/gicLAB/bifrost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信