松弛最高权模II:仿射顶点代数的分类

Kazuya Kawasetsu, David Ridout
{"title":"松弛最高权模II:仿射顶点代数的分类","authors":"Kazuya Kawasetsu, David Ridout","doi":"10.1142/S0219199721500371","DOIUrl":null,"url":null,"abstract":"This is the second of a series of articles devoted to the study of relaxed highest-weight modules over affine vertex algebras and W-algebras. The first studied the simple \"rank-$1$\" affine vertex superalgebras $L_k(\\mathfrak{sl}_2)$ and $L_k(\\mathfrak{osp}(1\\vert2))$, with the main results including the first complete proofs of certain conjectured character formulae (as well as some entirely new ones). Here, we turn to the question of classifying relaxed highest-weight modules for simple affine vertex algebras of arbitrary rank. The key point is that this can be reduced to the classification of highest-weight modules by generalising Olivier Mathieu's theory of coherent families. We formulate this algorithmically and illustrate its practical implementation with several detailed examples. We also show how to use coherent family technology to establish the non-semisimplicity of category $\\mathscr{O}$ in one of these examples.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Relaxed highest-weight modules II: Classifications for affine vertex algebras\",\"authors\":\"Kazuya Kawasetsu, David Ridout\",\"doi\":\"10.1142/S0219199721500371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second of a series of articles devoted to the study of relaxed highest-weight modules over affine vertex algebras and W-algebras. The first studied the simple \\\"rank-$1$\\\" affine vertex superalgebras $L_k(\\\\mathfrak{sl}_2)$ and $L_k(\\\\mathfrak{osp}(1\\\\vert2))$, with the main results including the first complete proofs of certain conjectured character formulae (as well as some entirely new ones). Here, we turn to the question of classifying relaxed highest-weight modules for simple affine vertex algebras of arbitrary rank. The key point is that this can be reduced to the classification of highest-weight modules by generalising Olivier Mathieu's theory of coherent families. We formulate this algorithmically and illustrate its practical implementation with several detailed examples. We also show how to use coherent family technology to establish the non-semisimplicity of category $\\\\mathscr{O}$ in one of these examples.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219199721500371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219199721500371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文是研究仿射顶点代数和w -代数上的松弛最高权模的系列文章的第二篇。第一个研究了简单的“秩-$1$”仿射顶点超代数$L_k(\mathfrak{sl}_2)$和$L_k(\mathfrak{osp}(1\vert2))$,主要结果包括某些猜想字符公式的第一个完整证明(以及一些全新的)。在这里,我们转向对任意秩的简单仿射顶点代数的松弛最高权模进行分类的问题。关键的一点是,通过推广Olivier Mathieu的连贯族理论,这可以简化为最高权模的分类。我们对该算法进行了详细的表述,并通过几个详细的例子说明了它的实际实现。我们还在其中一个示例中展示了如何使用相干族技术来建立类别$\mathscr{O}$的非半简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaxed highest-weight modules II: Classifications for affine vertex algebras
This is the second of a series of articles devoted to the study of relaxed highest-weight modules over affine vertex algebras and W-algebras. The first studied the simple "rank-$1$" affine vertex superalgebras $L_k(\mathfrak{sl}_2)$ and $L_k(\mathfrak{osp}(1\vert2))$, with the main results including the first complete proofs of certain conjectured character formulae (as well as some entirely new ones). Here, we turn to the question of classifying relaxed highest-weight modules for simple affine vertex algebras of arbitrary rank. The key point is that this can be reduced to the classification of highest-weight modules by generalising Olivier Mathieu's theory of coherent families. We formulate this algorithmically and illustrate its practical implementation with several detailed examples. We also show how to use coherent family technology to establish the non-semisimplicity of category $\mathscr{O}$ in one of these examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信