神经网络容错建模

L. Belfore, B.W. Johnson, J. Aylor
{"title":"神经网络容错建模","authors":"L. Belfore, B.W. Johnson, J. Aylor","doi":"10.1109/IECON.1989.69723","DOIUrl":null,"url":null,"abstract":"The authors present an analytical technique for assessing the fault tolerance of neural networks. The basis of the technique is developed through an analogy with magnetic spin systems using statistical mechanics. It is shown that neural networks can be analyzed using statistical mechanics. Simulated results are compared with analytical results, showing that the analytical model does indeed conform to the simulation model. The primary example presented is an associative memory.<<ETX>>","PeriodicalId":384081,"journal":{"name":"15th Annual Conference of IEEE Industrial Electronics Society","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Modeling of fault tolerance in neural networks\",\"authors\":\"L. Belfore, B.W. Johnson, J. Aylor\",\"doi\":\"10.1109/IECON.1989.69723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present an analytical technique for assessing the fault tolerance of neural networks. The basis of the technique is developed through an analogy with magnetic spin systems using statistical mechanics. It is shown that neural networks can be analyzed using statistical mechanics. Simulated results are compared with analytical results, showing that the analytical model does indeed conform to the simulation model. The primary example presented is an associative memory.<<ETX>>\",\"PeriodicalId\":384081,\"journal\":{\"name\":\"15th Annual Conference of IEEE Industrial Electronics Society\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th Annual Conference of IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1989.69723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Annual Conference of IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1989.69723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

提出了一种评估神经网络容错性的分析方法。该技术的基础是通过使用统计力学类比磁自旋系统而发展起来的。结果表明,神经网络可以用统计力学的方法进行分析。仿真结果与解析结果进行了比较,表明解析模型与仿真模型确实吻合。最主要的例子是联想记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of fault tolerance in neural networks
The authors present an analytical technique for assessing the fault tolerance of neural networks. The basis of the technique is developed through an analogy with magnetic spin systems using statistical mechanics. It is shown that neural networks can be analyzed using statistical mechanics. Simulated results are compared with analytical results, showing that the analytical model does indeed conform to the simulation model. The primary example presented is an associative memory.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信