LSOD:图像匹配的局部稀疏正交描述子

Yiru Zhao, Yaoyi Li, Zhiwen Shao, Hongtao Lu
{"title":"LSOD:图像匹配的局部稀疏正交描述子","authors":"Yiru Zhao, Yaoyi Li, Zhiwen Shao, Hongtao Lu","doi":"10.1145/2964284.2967217","DOIUrl":null,"url":null,"abstract":"We propose a novel method for feature description used for image matching in this paper. Our method is inspired by the autoencoder, an artificial neural network designed for learning efficient codings. Sparse and orthogonal constraints are imposed on the autoencoder and make it a highly discriminative descriptor. It is shown that the proposed descriptor is not only invariant to geometric and photometric transformations (such as viewpoint change, intensity change, noise, image blur and JPEG compression), but also highly efficient. We compare it with existing state-of-the-art descriptors on standard benchmark datasets, the experimental results show that our LSOD method yields better performance both in accuracy and efficiency.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LSOD: Local Sparse Orthogonal Descriptor for Image Matching\",\"authors\":\"Yiru Zhao, Yaoyi Li, Zhiwen Shao, Hongtao Lu\",\"doi\":\"10.1145/2964284.2967217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel method for feature description used for image matching in this paper. Our method is inspired by the autoencoder, an artificial neural network designed for learning efficient codings. Sparse and orthogonal constraints are imposed on the autoencoder and make it a highly discriminative descriptor. It is shown that the proposed descriptor is not only invariant to geometric and photometric transformations (such as viewpoint change, intensity change, noise, image blur and JPEG compression), but also highly efficient. We compare it with existing state-of-the-art descriptors on standard benchmark datasets, the experimental results show that our LSOD method yields better performance both in accuracy and efficiency.\",\"PeriodicalId\":140670,\"journal\":{\"name\":\"Proceedings of the 24th ACM international conference on Multimedia\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2964284.2967217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种用于图像匹配的特征描述方法。我们的方法受到自编码器的启发,这是一种用于学习有效编码的人工神经网络。稀疏和正交约束施加在自编码器上,使其成为一个高度判别的描述符。结果表明,该描述符不仅对几何和光度变换(如视点变化、强度变化、噪声、图像模糊和JPEG压缩)具有不变性,而且具有很高的效率。将其与现有最先进的描述符在标准基准数据集上进行比较,实验结果表明我们的LSOD方法在准确率和效率方面都有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSOD: Local Sparse Orthogonal Descriptor for Image Matching
We propose a novel method for feature description used for image matching in this paper. Our method is inspired by the autoencoder, an artificial neural network designed for learning efficient codings. Sparse and orthogonal constraints are imposed on the autoencoder and make it a highly discriminative descriptor. It is shown that the proposed descriptor is not only invariant to geometric and photometric transformations (such as viewpoint change, intensity change, noise, image blur and JPEG compression), but also highly efficient. We compare it with existing state-of-the-art descriptors on standard benchmark datasets, the experimental results show that our LSOD method yields better performance both in accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信