时域分析

H. Blinchikoff, A. Zverev
{"title":"时域分析","authors":"H. Blinchikoff, A. Zverev","doi":"10.1049/SBEW008E_ch1","DOIUrl":null,"url":null,"abstract":"In this chapter we have consolidated the mathematical developments necessary to relate the physical system and the differential equation describing it. This included the derivation of the impulse response, step response, and convolution integral. These quantities, which are important to the theory of filtering, were shown to be a function of the L.I. solutions of the homogeneous equation. It is hoped that this time-domain approach has clarified the transition from the basic differential equation concepts to the everyday tools of the linear system analyst.","PeriodicalId":344200,"journal":{"name":"Condition Monitoring with Vibration Signals","volume":"50 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Domain Analysis\",\"authors\":\"H. Blinchikoff, A. Zverev\",\"doi\":\"10.1049/SBEW008E_ch1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter we have consolidated the mathematical developments necessary to relate the physical system and the differential equation describing it. This included the derivation of the impulse response, step response, and convolution integral. These quantities, which are important to the theory of filtering, were shown to be a function of the L.I. solutions of the homogeneous equation. It is hoped that this time-domain approach has clarified the transition from the basic differential equation concepts to the everyday tools of the linear system analyst.\",\"PeriodicalId\":344200,\"journal\":{\"name\":\"Condition Monitoring with Vibration Signals\",\"volume\":\"50 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condition Monitoring with Vibration Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/SBEW008E_ch1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condition Monitoring with Vibration Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/SBEW008E_ch1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,我们巩固了把物理系统和描述它的微分方程联系起来所必需的数学发展。这包括推导脉冲响应、阶跃响应和卷积积分。这些对滤波理论很重要的量被证明是齐次方程的L.I.解的函数。希望这种时域方法能够澄清从基本微分方程概念到线性系统分析人员的日常工具的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Domain Analysis
In this chapter we have consolidated the mathematical developments necessary to relate the physical system and the differential equation describing it. This included the derivation of the impulse response, step response, and convolution integral. These quantities, which are important to the theory of filtering, were shown to be a function of the L.I. solutions of the homogeneous equation. It is hoped that this time-domain approach has clarified the transition from the basic differential equation concepts to the everyday tools of the linear system analyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信