图的凸重着色问题的把握

Q3 Computer Science
Ana Paula dos Santos Dantas , Cid Carvalho de Souza , Zanoni Dias
{"title":"图的凸重着色问题的把握","authors":"Ana Paula dos Santos Dantas ,&nbsp;Cid Carvalho de Souza ,&nbsp;Zanoni Dias","doi":"10.1016/j.entcs.2019.08.034","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a coloring as a function that assigns a color to a vertex, regardless of the color of its neighbors. The Convex Recoloring Problem finds the minimum number of recolored vertices needed to turn a coloring convex, that is, every set formed by all the vertices with the same color induces a connected subgraph. The problem is most commonly studied considering trees due to its origins in the study of phylogenetic trees, but in this paper, we focus on general graphs and propose a GRASP heuristic to solve the problem. We present computational experiments for our heuristic and compare it to an Integer Linear Programming model from the literature. In these experiments, the GRASP algorithm recolored a similar number of vertices than the model from the literature, and used considerably less time. We also introduce a set of benchmark instances for the problem.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 379-391"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.034","citationCount":"1","resultStr":"{\"title\":\"A GRASP for the Convex Recoloring Problem in Graphs\",\"authors\":\"Ana Paula dos Santos Dantas ,&nbsp;Cid Carvalho de Souza ,&nbsp;Zanoni Dias\",\"doi\":\"10.1016/j.entcs.2019.08.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a coloring as a function that assigns a color to a vertex, regardless of the color of its neighbors. The Convex Recoloring Problem finds the minimum number of recolored vertices needed to turn a coloring convex, that is, every set formed by all the vertices with the same color induces a connected subgraph. The problem is most commonly studied considering trees due to its origins in the study of phylogenetic trees, but in this paper, we focus on general graphs and propose a GRASP heuristic to solve the problem. We present computational experiments for our heuristic and compare it to an Integer Linear Programming model from the literature. In these experiments, the GRASP algorithm recolored a similar number of vertices than the model from the literature, and used considerably less time. We also introduce a set of benchmark instances for the problem.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 379-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.034\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119300854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119300854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们认为着色是一个函数,它赋予顶点一种颜色,而不考虑它的邻居的颜色。凸重着色问题找到了使一个着色凸转动所需的最小重着色顶点数,即由所有具有相同颜色的顶点组成的每个集合都会产生一个连通子图。由于该问题起源于系统发育树的研究,因此通常考虑树来研究该问题,但在本文中,我们将重点放在一般图上,并提出了一个GRASP启发式方法来解决该问题。我们提出了启发式的计算实验,并将其与文献中的整数线性规划模型进行了比较。在这些实验中,与文献中的模型相比,GRASP算法重新着色的顶点数量相似,并且使用的时间大大减少。我们还为这个问题引入了一组基准测试实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GRASP for the Convex Recoloring Problem in Graphs

In this paper, we consider a coloring as a function that assigns a color to a vertex, regardless of the color of its neighbors. The Convex Recoloring Problem finds the minimum number of recolored vertices needed to turn a coloring convex, that is, every set formed by all the vertices with the same color induces a connected subgraph. The problem is most commonly studied considering trees due to its origins in the study of phylogenetic trees, but in this paper, we focus on general graphs and propose a GRASP heuristic to solve the problem. We present computational experiments for our heuristic and compare it to an Integer Linear Programming model from the literature. In these experiments, the GRASP algorithm recolored a similar number of vertices than the model from the literature, and used considerably less time. We also introduce a set of benchmark instances for the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science Computer Science-Computer Science (all)
自引率
0.00%
发文量
0
期刊介绍: ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信