关于乘数Hopf代数的综述

Yinhuo Zhang
{"title":"关于乘数Hopf代数的综述","authors":"Yinhuo Zhang","doi":"10.1201/9780429187919-15","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize Majid’s bicrossproduct construction. We start with a pair (A,B) of two regular multiplier Hopf algebras. We assume that B is a right A-module algebra and that A is a left B-comodule coalgebra. We recall and discuss the two notions in the first sections of the paper. The right action of A on B gives rise to the smash product A#B. The left coaction of B on A gives a possible coproduct ∆# on A#B. We will discuss in detail the necessary compatibility conditions between the action and the coaction for ∆# to be a proper coproduct on A#B. The result is again a regular multiplier Hopf algebra. Majid’s construction is obtained when we have Hopf algebras. We also look at the dual case, constructed from a pair (C,D) of regular multiplier Hopf algebras where now C is a left D-module algebra while D is a right C-comodule coalgebra. We will show that indeed, these two constructions are dual to each other in the sense that a natural pairing of A with C and of B with D will yield a duality between A#B and the smash product C#D. We show that the bicrossproduct of algebraic quantum groups is again an algebraic quantum group (i.e. a regular multiplier Hopf algebra with integrals). The -algebra case will also be considered. Some special cases will be treated and they will be related with other constructions available in the literature. Finally, the basic example, coming from a (not necessarily finite) group G with two subgroups H and K such that G = KH and H ∩K = {e} (where e is the identity of G) will be used throughout the paper for motivation and illustration of the different notions and results. The cases where either H or K is a normal subgroup will get special attention. March 2009 (Version 2.1) 1 Department of Mathematics, Hasselt University, Agoralaan, B-3590 Diepenbeek (Belgium). E-mail: Lydia.Delvaux@uhasselt.be 2 Department of Mathematics, K.U. Leuven, Celestijnenlaan 200B (bus 2400), B-3001 Heverlee (Belgium). E-mail: Alfons.VanDaele@wis.kuleuven.be 3 Department of Mathematics, Southeast University, Nanjing 210096, China. E-mail: shuanhwang@seu.edu.cn","PeriodicalId":403117,"journal":{"name":"Hopf Algebras and Quantum Groups","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Survey on Multiplier Hopf Algebras\",\"authors\":\"Yinhuo Zhang\",\"doi\":\"10.1201/9780429187919-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize Majid’s bicrossproduct construction. We start with a pair (A,B) of two regular multiplier Hopf algebras. We assume that B is a right A-module algebra and that A is a left B-comodule coalgebra. We recall and discuss the two notions in the first sections of the paper. The right action of A on B gives rise to the smash product A#B. The left coaction of B on A gives a possible coproduct ∆# on A#B. We will discuss in detail the necessary compatibility conditions between the action and the coaction for ∆# to be a proper coproduct on A#B. The result is again a regular multiplier Hopf algebra. Majid’s construction is obtained when we have Hopf algebras. We also look at the dual case, constructed from a pair (C,D) of regular multiplier Hopf algebras where now C is a left D-module algebra while D is a right C-comodule coalgebra. We will show that indeed, these two constructions are dual to each other in the sense that a natural pairing of A with C and of B with D will yield a duality between A#B and the smash product C#D. We show that the bicrossproduct of algebraic quantum groups is again an algebraic quantum group (i.e. a regular multiplier Hopf algebra with integrals). The -algebra case will also be considered. Some special cases will be treated and they will be related with other constructions available in the literature. Finally, the basic example, coming from a (not necessarily finite) group G with two subgroups H and K such that G = KH and H ∩K = {e} (where e is the identity of G) will be used throughout the paper for motivation and illustration of the different notions and results. The cases where either H or K is a normal subgroup will get special attention. March 2009 (Version 2.1) 1 Department of Mathematics, Hasselt University, Agoralaan, B-3590 Diepenbeek (Belgium). E-mail: Lydia.Delvaux@uhasselt.be 2 Department of Mathematics, K.U. Leuven, Celestijnenlaan 200B (bus 2400), B-3001 Heverlee (Belgium). E-mail: Alfons.VanDaele@wis.kuleuven.be 3 Department of Mathematics, Southeast University, Nanjing 210096, China. E-mail: shuanhwang@seu.edu.cn\",\"PeriodicalId\":403117,\"journal\":{\"name\":\"Hopf Algebras and Quantum Groups\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hopf Algebras and Quantum Groups\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429187919-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hopf Algebras and Quantum Groups","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187919-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文推广了马吉德的双叉积构造。我们从一对(a,B)两个正则乘子Hopf代数开始。我们假设B是一个右a模代数而a是一个左B模协代数。在本文的第一部分中,我们回顾并讨论了这两个概念。A对B的正确作用产生粉碎产物a# B。B对A的左共作用给出了A#B上可能的副积∆#。我们将详细讨论为使∆#成为a #B上的适当副积,作用和共作用之间的必要相容条件。结果又是一个正则乘数Hopf代数。当我们有Hopf代数时,可以得到Majid的构造。我们也看对偶情况,由一对(C,D)正则乘子Hopf代数构成,其中C是左D模代数,D是右C模协代数。我们将证明,事实上,这两个结构在某种意义上是对偶的,即a与C和B与D的自然配对将产生a #B与粉碎产物c# D之间的对偶。我们证明了代数量子群的双叉积又是一个代数量子群(即带积分的正则乘子Hopf代数)。代数的情况也将被考虑。一些特殊情况将被处理,它们将与文献中可用的其他结构相关。最后,基本的例子,来自一个(不一定是有限的)群G,有两个子群H和K,使得G = KH和H∩K = {e}(其中e是G的恒等式),将在整篇论文中用于不同概念和结果的动机和说明。H或K是正常子群的情况会得到特别的关注。1哈瑟尔特大学数学系,Agoralaan, B-3590 Diepenbeek(比利时)。2鲁汶大学数学系,Celestijnenlaan 200B (bus 2400), Heverlee B-3001(比利时)。3东南大学数学系,江苏南京210096;电子邮件:shuanhwang@seu.edu.cn
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Multiplier Hopf Algebras
In this paper, we generalize Majid’s bicrossproduct construction. We start with a pair (A,B) of two regular multiplier Hopf algebras. We assume that B is a right A-module algebra and that A is a left B-comodule coalgebra. We recall and discuss the two notions in the first sections of the paper. The right action of A on B gives rise to the smash product A#B. The left coaction of B on A gives a possible coproduct ∆# on A#B. We will discuss in detail the necessary compatibility conditions between the action and the coaction for ∆# to be a proper coproduct on A#B. The result is again a regular multiplier Hopf algebra. Majid’s construction is obtained when we have Hopf algebras. We also look at the dual case, constructed from a pair (C,D) of regular multiplier Hopf algebras where now C is a left D-module algebra while D is a right C-comodule coalgebra. We will show that indeed, these two constructions are dual to each other in the sense that a natural pairing of A with C and of B with D will yield a duality between A#B and the smash product C#D. We show that the bicrossproduct of algebraic quantum groups is again an algebraic quantum group (i.e. a regular multiplier Hopf algebra with integrals). The -algebra case will also be considered. Some special cases will be treated and they will be related with other constructions available in the literature. Finally, the basic example, coming from a (not necessarily finite) group G with two subgroups H and K such that G = KH and H ∩K = {e} (where e is the identity of G) will be used throughout the paper for motivation and illustration of the different notions and results. The cases where either H or K is a normal subgroup will get special attention. March 2009 (Version 2.1) 1 Department of Mathematics, Hasselt University, Agoralaan, B-3590 Diepenbeek (Belgium). E-mail: Lydia.Delvaux@uhasselt.be 2 Department of Mathematics, K.U. Leuven, Celestijnenlaan 200B (bus 2400), B-3001 Heverlee (Belgium). E-mail: Alfons.VanDaele@wis.kuleuven.be 3 Department of Mathematics, Southeast University, Nanjing 210096, China. E-mail: shuanhwang@seu.edu.cn
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信