{"title":"向量值分布的多维陶博定理","authors":"S. Pilipovic, J. Vindas","doi":"10.2298/PIM1409001P","DOIUrl":null,"url":null,"abstract":"We prove several Tauberian theorems for regularizing transforms of vector-valued distributions. The regularizing transform of f is given by the integral transform M f(x, y) = (f � 'y)(x), (x, y) 2 R n × R+, with ker- nel 'y(t) = y−n'(t/y). We apply our results to the analysis of asymptotic stability for a class of Cauchy problems, Tauberian theorems for the Laplace transform, the comparison of quasiasymptotics in distribution spaces, and we give a necessary and sufficient condition for the existence of the trace of a dis- tribution on {x0} × R m . In addition, we present a new proof of Littlewood's Tauberian theorem.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"MULTIDIMENSIONAL TAUBERIAN THEOREMS FOR VECTOR-VALUED DISTRIBUTIONS\",\"authors\":\"S. Pilipovic, J. Vindas\",\"doi\":\"10.2298/PIM1409001P\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove several Tauberian theorems for regularizing transforms of vector-valued distributions. The regularizing transform of f is given by the integral transform M f(x, y) = (f � 'y)(x), (x, y) 2 R n × R+, with ker- nel 'y(t) = y−n'(t/y). We apply our results to the analysis of asymptotic stability for a class of Cauchy problems, Tauberian theorems for the Laplace transform, the comparison of quasiasymptotics in distribution spaces, and we give a necessary and sufficient condition for the existence of the trace of a dis- tribution on {x0} × R m . In addition, we present a new proof of Littlewood's Tauberian theorem.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1409001P\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1409001P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
摘要
证明了向量值分布正则化变换的几个Tauberian定理。f的正则化变换由积分变换M f(x, y) = (f′y)(x), (x, y) 2r n × R+给出,其中ker- nel 'y(t) = y−n'(t/y)。将所得结果应用于一类Cauchy问题的渐近稳定性分析,拉普拉斯变换的Tauberian定理,分布空间中拟渐近性的比较,并给出了{x0} × R m上分布迹存在的充分必要条件。此外,我们给出了Littlewood的陶伯利定理的一个新的证明。
MULTIDIMENSIONAL TAUBERIAN THEOREMS FOR VECTOR-VALUED DISTRIBUTIONS
We prove several Tauberian theorems for regularizing transforms of vector-valued distributions. The regularizing transform of f is given by the integral transform M f(x, y) = (f � 'y)(x), (x, y) 2 R n × R+, with ker- nel 'y(t) = y−n'(t/y). We apply our results to the analysis of asymptotic stability for a class of Cauchy problems, Tauberian theorems for the Laplace transform, the comparison of quasiasymptotics in distribution spaces, and we give a necessary and sufficient condition for the existence of the trace of a dis- tribution on {x0} × R m . In addition, we present a new proof of Littlewood's Tauberian theorem.