通过神经进化模拟光-暗盒子中的大鼠行为

Marco Aurelio Bastos Souza, Edson Eduardo Borges da Silva, João Pedro M. Tarrega, R. Tinós, A. Costa
{"title":"通过神经进化模拟光-暗盒子中的大鼠行为","authors":"Marco Aurelio Bastos Souza, Edson Eduardo Borges da Silva, João Pedro M. Tarrega, R. Tinós, A. Costa","doi":"10.5753/eniac.2022.227630","DOIUrl":null,"url":null,"abstract":"The light-dark box is a widely used test for the investigation of animal behavior commonly used to identify and study anxious-like behavioral patterns in rodents. We propose a neuroevolution model for virtual rats in a simulated light-dark box. The virtual rat is controlled by an artificial neural network (ANN) optimized by a genetic algorithm (GA). The fitness function is given by a weighed sum of two terms (punishment and reward). By changing the weight of the punishment term, we are able to simulate the effects of anxiolytic/anxiogenic drugs on rats. We also propose using GAs to optimize the number of the ANN hidden neurons and sensors for the virtual rat. According to the experiments, the best results are obtained by ANNs combining both luminosity and wall sensors.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"4 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Rat Behavior in a Light-Dark Box via Neuroevolution\",\"authors\":\"Marco Aurelio Bastos Souza, Edson Eduardo Borges da Silva, João Pedro M. Tarrega, R. Tinós, A. Costa\",\"doi\":\"10.5753/eniac.2022.227630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The light-dark box is a widely used test for the investigation of animal behavior commonly used to identify and study anxious-like behavioral patterns in rodents. We propose a neuroevolution model for virtual rats in a simulated light-dark box. The virtual rat is controlled by an artificial neural network (ANN) optimized by a genetic algorithm (GA). The fitness function is given by a weighed sum of two terms (punishment and reward). By changing the weight of the punishment term, we are able to simulate the effects of anxiolytic/anxiogenic drugs on rats. We also propose using GAs to optimize the number of the ANN hidden neurons and sensors for the virtual rat. According to the experiments, the best results are obtained by ANNs combining both luminosity and wall sensors.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"4 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

明暗箱是一种广泛使用的动物行为调查测试,通常用于识别和研究啮齿动物的焦虑样行为模式。我们提出了一个模拟光-暗盒子中虚拟大鼠的神经进化模型。虚拟大鼠由遗传算法优化的人工神经网络(ANN)控制。适应度函数由两项(惩罚和奖励)的加权和给出。通过改变惩罚项的权重,我们能够模拟抗焦虑/致焦虑药物对大鼠的影响。我们还提出了使用GAs来优化虚拟大鼠的神经网络隐藏神经元和传感器的数量。实验结果表明,将亮度传感器和壁面传感器结合使用的人工神经网络效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Rat Behavior in a Light-Dark Box via Neuroevolution
The light-dark box is a widely used test for the investigation of animal behavior commonly used to identify and study anxious-like behavioral patterns in rodents. We propose a neuroevolution model for virtual rats in a simulated light-dark box. The virtual rat is controlled by an artificial neural network (ANN) optimized by a genetic algorithm (GA). The fitness function is given by a weighed sum of two terms (punishment and reward). By changing the weight of the punishment term, we are able to simulate the effects of anxiolytic/anxiogenic drugs on rats. We also propose using GAs to optimize the number of the ANN hidden neurons and sensors for the virtual rat. According to the experiments, the best results are obtained by ANNs combining both luminosity and wall sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信