基于标签映射的实体属性提取方法研究

Huilin Liu, Cheng Chen, Liwei Zhang, Guoren Wang
{"title":"基于标签映射的实体属性提取方法研究","authors":"Huilin Liu, Cheng Chen, Liwei Zhang, Guoren Wang","doi":"10.1109/PIC.2010.5687859","DOIUrl":null,"url":null,"abstract":"With the rapid development of new media, such as computer and Internet, extract valuable entity attribute information from Web text can be significant. Aiming at this problem, this paper puts forward SALmap, this model calls seed method at first, which will create common candidate attribute label sets by defining data format rules. Then we construct the mapping relationship between the attributes and the labels using attribute value information and the maximum entropy model, and label the entity instance as well. Finally, hidden Markov model is applied to the relevant entity attribute extraction. Experiments prove SALmap model can significantly improve the precision and performance of entity attribute extraction.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The research of label-mapping-based entity attribute extraction\",\"authors\":\"Huilin Liu, Cheng Chen, Liwei Zhang, Guoren Wang\",\"doi\":\"10.1109/PIC.2010.5687859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of new media, such as computer and Internet, extract valuable entity attribute information from Web text can be significant. Aiming at this problem, this paper puts forward SALmap, this model calls seed method at first, which will create common candidate attribute label sets by defining data format rules. Then we construct the mapping relationship between the attributes and the labels using attribute value information and the maximum entropy model, and label the entity instance as well. Finally, hidden Markov model is applied to the relevant entity attribute extraction. Experiments prove SALmap model can significantly improve the precision and performance of entity attribute extraction.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5687859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着计算机、互联网等新媒体的快速发展,从Web文本中提取有价值的实体属性信息具有重要意义。针对这一问题,本文提出了SALmap模型,该模型首先调用种子方法,通过定义数据格式规则来创建通用的候选属性标签集。然后利用属性值信息和最大熵模型构造属性与标签之间的映射关系,并对实体实例进行标注。最后,将隐马尔可夫模型应用于相关实体属性提取。实验证明,SALmap模型能显著提高实体属性提取的精度和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The research of label-mapping-based entity attribute extraction
With the rapid development of new media, such as computer and Internet, extract valuable entity attribute information from Web text can be significant. Aiming at this problem, this paper puts forward SALmap, this model calls seed method at first, which will create common candidate attribute label sets by defining data format rules. Then we construct the mapping relationship between the attributes and the labels using attribute value information and the maximum entropy model, and label the entity instance as well. Finally, hidden Markov model is applied to the relevant entity attribute extraction. Experiments prove SALmap model can significantly improve the precision and performance of entity attribute extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信