重新访问$L_\infty$ Hausdorff Voronoi图

Evanthia Papadopoulou, Jinhui Xu
{"title":"重新访问$L_\\infty$ Hausdorff Voronoi图","authors":"Evanthia Papadopoulou, Jinhui Xu","doi":"10.1109/ISVD.2011.17","DOIUrl":null,"url":null,"abstract":"We revisit the L-infinity Hausdorff Voronoi diagram of clusters of points, equivalently, the L-infinity Hausdorff Voronoi diagram of rectangles, and present a plane sweep algorithm for its construction that generalizes and improves upon previous results. We show that the structural complexity of the L-infinity Hausdorff Voronoi diagram is Theta(n+m), where n is the number of given clusters and m is the number of essential pairs of crossing clusters. The algorithm runs in O((n+M)\\log n) time and O(n+M) space where M is the number of potentially essential crossings; m, M are O(n^2), m = M, but m = M, in the worst case. In practice m;M","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The $L_\\\\infty$ Hausdorff Voronoi Diagram Revisited\",\"authors\":\"Evanthia Papadopoulou, Jinhui Xu\",\"doi\":\"10.1109/ISVD.2011.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the L-infinity Hausdorff Voronoi diagram of clusters of points, equivalently, the L-infinity Hausdorff Voronoi diagram of rectangles, and present a plane sweep algorithm for its construction that generalizes and improves upon previous results. We show that the structural complexity of the L-infinity Hausdorff Voronoi diagram is Theta(n+m), where n is the number of given clusters and m is the number of essential pairs of crossing clusters. The algorithm runs in O((n+M)\\\\log n) time and O(n+M) space where M is the number of potentially essential crossings; m, M are O(n^2), m = M, but m = M, in the worst case. In practice m;M\",\"PeriodicalId\":152151,\"journal\":{\"name\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2011.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们重新审视了点簇的l -∞Hausdorff Voronoi图,相当于矩形的l -∞Hausdorff Voronoi图,并提出了一个平面扫描算法来构建它,该算法在之前的结果基础上进行了推广和改进。我们证明了l -∞Hausdorff Voronoi图的结构复杂性是Theta(n+m),其中n是给定簇的数量,m是交叉簇的基本对的数量。该算法在O((n+M)\log n)时间和O(n+M)空间内运行,其中M是潜在必要交叉的数量;m m是O(n²)m = m,最坏情况下m = m。在实践中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The $L_\infty$ Hausdorff Voronoi Diagram Revisited
We revisit the L-infinity Hausdorff Voronoi diagram of clusters of points, equivalently, the L-infinity Hausdorff Voronoi diagram of rectangles, and present a plane sweep algorithm for its construction that generalizes and improves upon previous results. We show that the structural complexity of the L-infinity Hausdorff Voronoi diagram is Theta(n+m), where n is the number of given clusters and m is the number of essential pairs of crossing clusters. The algorithm runs in O((n+M)\log n) time and O(n+M) space where M is the number of potentially essential crossings; m, M are O(n^2), m = M, but m = M, in the worst case. In practice m;M
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信