草书识别使用Gabor特征和SVM分类器

K. O. M. Aarif, P. Sivakumar
{"title":"草书识别使用Gabor特征和SVM分类器","authors":"K. O. M. Aarif, P. Sivakumar","doi":"10.1504/ijcaet.2020.10027369","DOIUrl":null,"url":null,"abstract":"Script identification is one of a challenging segment of optical character recognition system for the bilingual or multilingual document image. Significant research work has been noted on script identification in the last two decades which highly concentrated on natural languages like Latin, Chinese, Hindi, French and so forth. Very little efforts are made on script identification of cursive languages like Arabic, Urdu, Pashto, etc. Most of the Urdu ancient literature which is yet to be digitised includes both Urdu and Arabic text. In this paper, we present a script identification of Urdu and Arabic text at word level using Gabor features with suitable orientation and frequencies. The proposed model is trained using support vector machine (SVM) classifier and the results achieved are very promising.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cursive script identification using Gabor features and SVM classifier\",\"authors\":\"K. O. M. Aarif, P. Sivakumar\",\"doi\":\"10.1504/ijcaet.2020.10027369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Script identification is one of a challenging segment of optical character recognition system for the bilingual or multilingual document image. Significant research work has been noted on script identification in the last two decades which highly concentrated on natural languages like Latin, Chinese, Hindi, French and so forth. Very little efforts are made on script identification of cursive languages like Arabic, Urdu, Pashto, etc. Most of the Urdu ancient literature which is yet to be digitised includes both Urdu and Arabic text. In this paper, we present a script identification of Urdu and Arabic text at word level using Gabor features with suitable orientation and frequencies. The proposed model is trained using support vector machine (SVM) classifier and the results achieved are very promising.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcaet.2020.10027369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcaet.2020.10027369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

文字识别是双语或多语言文档图像光学字符识别系统中一个具有挑战性的部分。近二十年来,人们在文字识别方面做了大量的研究工作,主要集中在拉丁语、汉语、印地语、法语等自然语言。草书语言如阿拉伯语、乌尔都语、普什图语等的文字识别工作很少。大多数尚未数字化的乌尔都语古代文献包括乌尔都语和阿拉伯语文本。本文提出了一种基于Gabor特征的乌尔都语和阿拉伯语文本的词级识别方法。采用支持向量机(SVM)分类器对该模型进行训练,取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cursive script identification using Gabor features and SVM classifier
Script identification is one of a challenging segment of optical character recognition system for the bilingual or multilingual document image. Significant research work has been noted on script identification in the last two decades which highly concentrated on natural languages like Latin, Chinese, Hindi, French and so forth. Very little efforts are made on script identification of cursive languages like Arabic, Urdu, Pashto, etc. Most of the Urdu ancient literature which is yet to be digitised includes both Urdu and Arabic text. In this paper, we present a script identification of Urdu and Arabic text at word level using Gabor features with suitable orientation and frequencies. The proposed model is trained using support vector machine (SVM) classifier and the results achieved are very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信