通过多种学习和专家建议相结合的强化学习与监督

H. Chang
{"title":"通过多种学习和专家建议相结合的强化学习与监督","authors":"H. Chang","doi":"10.1109/ACC.2006.1657371","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a formal coherent learning framework where reinforcement learning is combined with multiple learnings and expert advices toward accelerating convergence speed of learning. Our approach is simply to use a nonstationary \"potential-based reinforcement function\" for shaping the reinforcement signal given to the learning \"base-agent\". The base-agent employes SARSA(O) or adaptive asynchronous value iteration (VI), and the supervised inputs to the base-agent from the \"subagents\" involved with other parallel independent reinforcement learnings and if available, from experts are \"merged\" into the potential-based reinforcement function value and the value is put into the update equation of SARSA(O) for the Q-function estimate or of adaptive asynchronous VI for the optimal value function estimate. The resulting SARSA(O) and adaptive asynchronous VI converge to an optimal policy, respectively","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Reinforcement learning with supervision by combining multiple learnings and expert advices\",\"authors\":\"H. Chang\",\"doi\":\"10.1109/ACC.2006.1657371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a formal coherent learning framework where reinforcement learning is combined with multiple learnings and expert advices toward accelerating convergence speed of learning. Our approach is simply to use a nonstationary \\\"potential-based reinforcement function\\\" for shaping the reinforcement signal given to the learning \\\"base-agent\\\". The base-agent employes SARSA(O) or adaptive asynchronous value iteration (VI), and the supervised inputs to the base-agent from the \\\"subagents\\\" involved with other parallel independent reinforcement learnings and if available, from experts are \\\"merged\\\" into the potential-based reinforcement function value and the value is put into the update equation of SARSA(O) for the Q-function estimate or of adaptive asynchronous VI for the optimal value function estimate. The resulting SARSA(O) and adaptive asynchronous VI converge to an optimal policy, respectively\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1657371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1657371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提供了一个正式的连贯学习框架,其中强化学习与多种学习和专家建议相结合,以加快学习的收敛速度。我们的方法是简单地使用一个非平稳的“基于电位的强化函数”来塑造给予学习“基础代理”的强化信号。基本智能体使用SARSA(O)或自适应异步值迭代(VI),并且从涉及其他并行独立强化学习的“子智能体”以及(如果有的话)来自专家的监督输入被“合并”到基于电位的强化函数值中,并将该值放入SARSA(O)的更新方程中用于q函数估计或自适应异步VI的更新方程中用于最优值函数估计。结果SARSA(O)和自适应异步VI分别收敛到最优策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning with supervision by combining multiple learnings and expert advices
In this paper, we provide a formal coherent learning framework where reinforcement learning is combined with multiple learnings and expert advices toward accelerating convergence speed of learning. Our approach is simply to use a nonstationary "potential-based reinforcement function" for shaping the reinforcement signal given to the learning "base-agent". The base-agent employes SARSA(O) or adaptive asynchronous value iteration (VI), and the supervised inputs to the base-agent from the "subagents" involved with other parallel independent reinforcement learnings and if available, from experts are "merged" into the potential-based reinforcement function value and the value is put into the update equation of SARSA(O) for the Q-function estimate or of adaptive asynchronous VI for the optimal value function estimate. The resulting SARSA(O) and adaptive asynchronous VI converge to an optimal policy, respectively
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信