Yu Zhou, Lifeng Hong, Xueyu Li, S. Ding, Farong Du, Xintao Zheng
{"title":"基于磁力减速齿轮的空气涡轮起动器转子系统瞬态动力学研究","authors":"Yu Zhou, Lifeng Hong, Xueyu Li, S. Ding, Farong Du, Xintao Zheng","doi":"10.51393/j.jamst.2021009","DOIUrl":null,"url":null,"abstract":"As an auxiliary mechanical device, Air Turbine Starter (ATS) uses compressed air as power source to start and drive the engine. It withstands the impact of high-pressure airflow during operation, which may cause collision between key components. For this reason, it is necessary to investigate the transient dynamics of ATS rotor system. However, different from the traditional dual rotor structure, ATS uses magnetic reduction gear (MRG) as a reduction unit, which involves multiple physical fields such as magnetic field and stress field, bringing challenges to transient dynamics analysis. In this paper, the magnetic interaction forces between various rotors are innovatively simplified into the form of springs, and added to the solution model to achieve the decoupling of multiple physical fields. On this basis, the transient displacement response of MRG-ATS has been analyzed using transient dynamics theory. The results indicate that the transient displacement of the rotor system has obvious characteristics of oscillation attenuation. The study reveals the feasibility of MRG-ATS application under transient shock.","PeriodicalId":130845,"journal":{"name":"Journal of Advanced Manufacturing Science and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Investigation on transient dynamics of rotor system in air turbine starter based on magnetic reduction gear\",\"authors\":\"Yu Zhou, Lifeng Hong, Xueyu Li, S. Ding, Farong Du, Xintao Zheng\",\"doi\":\"10.51393/j.jamst.2021009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an auxiliary mechanical device, Air Turbine Starter (ATS) uses compressed air as power source to start and drive the engine. It withstands the impact of high-pressure airflow during operation, which may cause collision between key components. For this reason, it is necessary to investigate the transient dynamics of ATS rotor system. However, different from the traditional dual rotor structure, ATS uses magnetic reduction gear (MRG) as a reduction unit, which involves multiple physical fields such as magnetic field and stress field, bringing challenges to transient dynamics analysis. In this paper, the magnetic interaction forces between various rotors are innovatively simplified into the form of springs, and added to the solution model to achieve the decoupling of multiple physical fields. On this basis, the transient displacement response of MRG-ATS has been analyzed using transient dynamics theory. The results indicate that the transient displacement of the rotor system has obvious characteristics of oscillation attenuation. The study reveals the feasibility of MRG-ATS application under transient shock.\",\"PeriodicalId\":130845,\"journal\":{\"name\":\"Journal of Advanced Manufacturing Science and Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Manufacturing Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51393/j.jamst.2021009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Manufacturing Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51393/j.jamst.2021009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation on transient dynamics of rotor system in air turbine starter based on magnetic reduction gear
As an auxiliary mechanical device, Air Turbine Starter (ATS) uses compressed air as power source to start and drive the engine. It withstands the impact of high-pressure airflow during operation, which may cause collision between key components. For this reason, it is necessary to investigate the transient dynamics of ATS rotor system. However, different from the traditional dual rotor structure, ATS uses magnetic reduction gear (MRG) as a reduction unit, which involves multiple physical fields such as magnetic field and stress field, bringing challenges to transient dynamics analysis. In this paper, the magnetic interaction forces between various rotors are innovatively simplified into the form of springs, and added to the solution model to achieve the decoupling of multiple physical fields. On this basis, the transient displacement response of MRG-ATS has been analyzed using transient dynamics theory. The results indicate that the transient displacement of the rotor system has obvious characteristics of oscillation attenuation. The study reveals the feasibility of MRG-ATS application under transient shock.