{"title":"基于微分博弈论的航天器椭圆轨道末端交会h∞控制器设计","authors":"G. Franzini, L. Pollini, M. Innocenti","doi":"10.1109/ACC.2016.7526847","DOIUrl":null,"url":null,"abstract":"The paper presents a H-infinity guidance law for spacecraft low-thrust terminal rendezvous on elliptic orbits. The dynamics of the rendezvous on elliptic orbits are governed by a set of linear time-varying equations, in literature known as linear equations of relative motion. Standard H-infinity controller design technique for linear systems cannot be adopted, since the system is time-varying. Therefore, the problem is formulated as a zero-sum two-person differential game following the minimax H-infinity design technique developed by Başar and Bernhard. The main result is a closed-form solution of the terminal rendezvous on elliptic orbits H-infinity control problem. In addition, we prove that the H-infinity norm of the closed-loop system is bounded.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"H-infinity controller design for spacecraft terminal rendezvous on elliptic orbits using differential game theory\",\"authors\":\"G. Franzini, L. Pollini, M. Innocenti\",\"doi\":\"10.1109/ACC.2016.7526847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a H-infinity guidance law for spacecraft low-thrust terminal rendezvous on elliptic orbits. The dynamics of the rendezvous on elliptic orbits are governed by a set of linear time-varying equations, in literature known as linear equations of relative motion. Standard H-infinity controller design technique for linear systems cannot be adopted, since the system is time-varying. Therefore, the problem is formulated as a zero-sum two-person differential game following the minimax H-infinity design technique developed by Başar and Bernhard. The main result is a closed-form solution of the terminal rendezvous on elliptic orbits H-infinity control problem. In addition, we prove that the H-infinity norm of the closed-loop system is bounded.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7526847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7526847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H-infinity controller design for spacecraft terminal rendezvous on elliptic orbits using differential game theory
The paper presents a H-infinity guidance law for spacecraft low-thrust terminal rendezvous on elliptic orbits. The dynamics of the rendezvous on elliptic orbits are governed by a set of linear time-varying equations, in literature known as linear equations of relative motion. Standard H-infinity controller design technique for linear systems cannot be adopted, since the system is time-varying. Therefore, the problem is formulated as a zero-sum two-person differential game following the minimax H-infinity design technique developed by Başar and Bernhard. The main result is a closed-form solution of the terminal rendezvous on elliptic orbits H-infinity control problem. In addition, we prove that the H-infinity norm of the closed-loop system is bounded.