{"title":"在0(0)时间内优化闭包","authors":"Andrew W. Keep, Alex Hearn, R. Dybvig","doi":"10.1145/2661103.2661106","DOIUrl":null,"url":null,"abstract":"The flat-closure model for the representation of first-class procedures is simple, safe-for-space, and efficient, allowing the values or locations of free variables to be accessed with a single memory indirect. It is a straightforward model for programmers to understand, allowing programmers to predict the worst-case behavior of their programs. This paper presents a set of optimizations that improve upon the flat-closure model along with an algorithm that implements them, and it shows that the optimizations together eliminate over 50% of run-time closure-creation and free-variable access overhead in practice, with insignificant compile-time overhead. The optimizations never add overhead and remain safe-for-space, thus preserving the benefits of the flat-closure model.","PeriodicalId":113092,"journal":{"name":"Scheme and Functional Programming","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimizing closures in O(0) time\",\"authors\":\"Andrew W. Keep, Alex Hearn, R. Dybvig\",\"doi\":\"10.1145/2661103.2661106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flat-closure model for the representation of first-class procedures is simple, safe-for-space, and efficient, allowing the values or locations of free variables to be accessed with a single memory indirect. It is a straightforward model for programmers to understand, allowing programmers to predict the worst-case behavior of their programs. This paper presents a set of optimizations that improve upon the flat-closure model along with an algorithm that implements them, and it shows that the optimizations together eliminate over 50% of run-time closure-creation and free-variable access overhead in practice, with insignificant compile-time overhead. The optimizations never add overhead and remain safe-for-space, thus preserving the benefits of the flat-closure model.\",\"PeriodicalId\":113092,\"journal\":{\"name\":\"Scheme and Functional Programming\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scheme and Functional Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661103.2661106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scheme and Functional Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661103.2661106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The flat-closure model for the representation of first-class procedures is simple, safe-for-space, and efficient, allowing the values or locations of free variables to be accessed with a single memory indirect. It is a straightforward model for programmers to understand, allowing programmers to predict the worst-case behavior of their programs. This paper presents a set of optimizations that improve upon the flat-closure model along with an algorithm that implements them, and it shows that the optimizations together eliminate over 50% of run-time closure-creation and free-variable access overhead in practice, with insignificant compile-time overhead. The optimizations never add overhead and remain safe-for-space, thus preserving the benefits of the flat-closure model.