基于多元语言模型增量学习的高性能个人自适应语音识别框架

Yukino Ikegami, R. Knauf, E. Damiani, S. Tsuruta, Yoshitaka Sakurai, Eriko Sakurai, Andrea Kutics, Akihiko Nakagawa
{"title":"基于多元语言模型增量学习的高性能个人自适应语音识别框架","authors":"Yukino Ikegami, R. Knauf, E. Damiani, S. Tsuruta, Yoshitaka Sakurai, Eriko Sakurai, Andrea Kutics, Akihiko Nakagawa","doi":"10.1109/SITIS.2019.00081","DOIUrl":null,"url":null,"abstract":"This paper introduces a speech recognition framework for high performance personalized adaption. It is based on plural language models and personalized incremental learning interface for error correction. If an error in a recognition result is detected by a bidirectional neural language model, it generates a corrected sentence by a majority decision among multiple n-gram language models considering several aspects. Moreover, we introduce a speaker adaptation by updating language models through incremental learning, which can adjust the parameter from training data. The experiments show that our framework improves word-error rate to 78% compared with Google Chrome's Speech Recognition API. Our framework can be used for improving one-to-one human-machine dialogue systems such as intelligent (counseling) agents.","PeriodicalId":301876,"journal":{"name":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"9 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Performance Personal Adaptation Speech Recognition Framework by Incremental Learning with Plural Language Models\",\"authors\":\"Yukino Ikegami, R. Knauf, E. Damiani, S. Tsuruta, Yoshitaka Sakurai, Eriko Sakurai, Andrea Kutics, Akihiko Nakagawa\",\"doi\":\"10.1109/SITIS.2019.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a speech recognition framework for high performance personalized adaption. It is based on plural language models and personalized incremental learning interface for error correction. If an error in a recognition result is detected by a bidirectional neural language model, it generates a corrected sentence by a majority decision among multiple n-gram language models considering several aspects. Moreover, we introduce a speaker adaptation by updating language models through incremental learning, which can adjust the parameter from training data. The experiments show that our framework improves word-error rate to 78% compared with Google Chrome's Speech Recognition API. Our framework can be used for improving one-to-one human-machine dialogue systems such as intelligent (counseling) agents.\",\"PeriodicalId\":301876,\"journal\":{\"name\":\"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"9 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2019.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2019.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种高性能个性化自适应语音识别框架。它基于多元语言模型和个性化的增量学习界面进行纠错。如果双向神经语言模型检测到识别结果中的错误,它会在多个n-gram语言模型中考虑几个方面,通过多数决定生成一个纠正的句子。此外,我们还引入了一种通过增量学习来更新语言模型的说话人自适应方法,该方法可以根据训练数据调整参数。实验表明,与Google Chrome的语音识别API相比,我们的框架将单词错误率提高到78%。我们的框架可以用于改进一对一的人机对话系统,如智能(咨询)代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Performance Personal Adaptation Speech Recognition Framework by Incremental Learning with Plural Language Models
This paper introduces a speech recognition framework for high performance personalized adaption. It is based on plural language models and personalized incremental learning interface for error correction. If an error in a recognition result is detected by a bidirectional neural language model, it generates a corrected sentence by a majority decision among multiple n-gram language models considering several aspects. Moreover, we introduce a speaker adaptation by updating language models through incremental learning, which can adjust the parameter from training data. The experiments show that our framework improves word-error rate to 78% compared with Google Chrome's Speech Recognition API. Our framework can be used for improving one-to-one human-machine dialogue systems such as intelligent (counseling) agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信