蛋白质结构预测的有效框架

Nagamma Patil, Durga Toshniwal, K. Garg
{"title":"蛋白质结构预测的有效框架","authors":"Nagamma Patil, Durga Toshniwal, K. Garg","doi":"10.1504/IJFIPM.2012.050426","DOIUrl":null,"url":null,"abstract":"This paper presents a computational system to predict protein structure using N–grams and a wrapper feature selection framework (the N–gram is a subsequence composed of N characters, extracted from a larger sequence). N–gram features are extracted from a dataset consisting of 277 domains: 70 all–α domains, 61 all–β domains, 81 α/β domains and 65 α + β domains. A wrapper feature selection system, GA–SVM, is applied to obtain an optimised feature set. Using the optimised 3070–feature subset, a classifier model is trained and tested in the Support Vector Machine (SVM) learning system. This model achieves an overall accuracy of 88.09%, evaluated by a 10–fold cross–validation test. This value is 4.7% higher than the one using the initial 6,414 features. Experimental results also illustrate that employing a feature subset selection, by using the proposed GA–SVM wrapper approach, has enhanced classification accuracy in comparison to other GA–based wrapper approaches and existing protein sequence encoding methods.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective framework for protein structure prediction\",\"authors\":\"Nagamma Patil, Durga Toshniwal, K. Garg\",\"doi\":\"10.1504/IJFIPM.2012.050426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a computational system to predict protein structure using N–grams and a wrapper feature selection framework (the N–gram is a subsequence composed of N characters, extracted from a larger sequence). N–gram features are extracted from a dataset consisting of 277 domains: 70 all–α domains, 61 all–β domains, 81 α/β domains and 65 α + β domains. A wrapper feature selection system, GA–SVM, is applied to obtain an optimised feature set. Using the optimised 3070–feature subset, a classifier model is trained and tested in the Support Vector Machine (SVM) learning system. This model achieves an overall accuracy of 88.09%, evaluated by a 10–fold cross–validation test. This value is 4.7% higher than the one using the initial 6,414 features. Experimental results also illustrate that employing a feature subset selection, by using the proposed GA–SVM wrapper approach, has enhanced classification accuracy in comparison to other GA–based wrapper approaches and existing protein sequence encoding methods.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2012.050426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2012.050426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个使用N - gram和包装特征选择框架(N - gram是由N个字符组成的子序列,从一个较大的序列中提取)来预测蛋白质结构的计算系统。从277个结构域中提取N-gram特征:70个全α结构域,61个全β结构域,81个α/β结构域和65个α + β结构域。应用一种包装特征选择系统GA-SVM来获得一个优化的特征集。利用优化后的3070个特征子集,在支持向量机(SVM)学习系统中训练和测试分类器模型。通过10倍交叉验证检验,该模型的总体准确率为88.09%。这个值比使用最初的6,414个特征的值高4.7%。实验结果还表明,与其他基于遗传算法的包装方法和现有的蛋白质序列编码方法相比,使用GA-SVM包装方法进行特征子集选择,可以提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective framework for protein structure prediction
This paper presents a computational system to predict protein structure using N–grams and a wrapper feature selection framework (the N–gram is a subsequence composed of N characters, extracted from a larger sequence). N–gram features are extracted from a dataset consisting of 277 domains: 70 all–α domains, 61 all–β domains, 81 α/β domains and 65 α + β domains. A wrapper feature selection system, GA–SVM, is applied to obtain an optimised feature set. Using the optimised 3070–feature subset, a classifier model is trained and tested in the Support Vector Machine (SVM) learning system. This model achieves an overall accuracy of 88.09%, evaluated by a 10–fold cross–validation test. This value is 4.7% higher than the one using the initial 6,414 features. Experimental results also illustrate that employing a feature subset selection, by using the proposed GA–SVM wrapper approach, has enhanced classification accuracy in comparison to other GA–based wrapper approaches and existing protein sequence encoding methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信