金属潜热储能系统热放电性能的实验研究

F. Nees, Anastasios Katourtzidis, W. Kraft, Veronika Stahl, P. Vetter
{"title":"金属潜热储能系统热放电性能的实验研究","authors":"F. Nees, Anastasios Katourtzidis, W. Kraft, Veronika Stahl, P. Vetter","doi":"10.11159/htff22.139","DOIUrl":null,"url":null,"abstract":"Extended Abstract Metallic latent thermal energy storage systems are a promising technology for efficient storage of heat with a small foot print in volume and weight. Metallic phase change materials (mPCMs) are characterized by high energy densities and thermal conductivities [1, 2], which allow for fast thermal charging and discharging. These attributes make this kind of storage system attractive for mobile applications. High heat supply rates are required for battery electric vehicles under cold ambient conditions. In opposite to fuel cell or combustion driven engines, battery electric engines reject only little waste heat available for heating purposes. However, the usage of the battery for resistive heating or operation of a heat pump goes along with a reduction in range, which can be more than 50% at cold temperatures [3]. Therefore, a metallic latent thermal energy storage is a possible approach to solve this problem [4] and is currently considered in particular of interest for applications in battery electric buses.","PeriodicalId":385356,"journal":{"name":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Thermal Discharge Performance of a Metallic Latent Thermal Energy Storage System\",\"authors\":\"F. Nees, Anastasios Katourtzidis, W. Kraft, Veronika Stahl, P. Vetter\",\"doi\":\"10.11159/htff22.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Abstract Metallic latent thermal energy storage systems are a promising technology for efficient storage of heat with a small foot print in volume and weight. Metallic phase change materials (mPCMs) are characterized by high energy densities and thermal conductivities [1, 2], which allow for fast thermal charging and discharging. These attributes make this kind of storage system attractive for mobile applications. High heat supply rates are required for battery electric vehicles under cold ambient conditions. In opposite to fuel cell or combustion driven engines, battery electric engines reject only little waste heat available for heating purposes. However, the usage of the battery for resistive heating or operation of a heat pump goes along with a reduction in range, which can be more than 50% at cold temperatures [3]. Therefore, a metallic latent thermal energy storage is a possible approach to solve this problem [4] and is currently considered in particular of interest for applications in battery electric buses.\",\"PeriodicalId\":385356,\"journal\":{\"name\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/htff22.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/htff22.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属潜热储能系统是一种很有前途的高效储热技术,具有体积和重量小的特点。金属相变材料(mpcm)具有高能量密度和高热导率的特点[1,2],可以实现快速的热充放电。这些属性使这种存储系统对移动应用程序具有吸引力。在寒冷的环境条件下,电池电动汽车需要高的供热率。与燃料电池或燃烧驱动的发动机相反,电池电动发动机只排斥很少的废热,用于加热目的。然而,使用电池进行电阻加热或热泵的运行伴随着范围的缩小,在低温下可以减少50%以上[3]。因此,金属潜热储能是解决这一问题的一种可能方法[4],目前被认为对电池电动客车的应用特别感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Thermal Discharge Performance of a Metallic Latent Thermal Energy Storage System
Extended Abstract Metallic latent thermal energy storage systems are a promising technology for efficient storage of heat with a small foot print in volume and weight. Metallic phase change materials (mPCMs) are characterized by high energy densities and thermal conductivities [1, 2], which allow for fast thermal charging and discharging. These attributes make this kind of storage system attractive for mobile applications. High heat supply rates are required for battery electric vehicles under cold ambient conditions. In opposite to fuel cell or combustion driven engines, battery electric engines reject only little waste heat available for heating purposes. However, the usage of the battery for resistive heating or operation of a heat pump goes along with a reduction in range, which can be more than 50% at cold temperatures [3]. Therefore, a metallic latent thermal energy storage is a possible approach to solve this problem [4] and is currently considered in particular of interest for applications in battery electric buses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信