{"title":"自适应随机检验中k-均值聚类最优k值的确定方法","authors":"Jinfu Chen, Lingling Zhao, Minmin Zhou, Yisong Liu, Songling Qin","doi":"10.1109/QRS51102.2020.00032","DOIUrl":null,"url":null,"abstract":"Adaptive Random Testing (ART) aims at improving detection effectiveness by evenly distributing test cases over the whole input domain. Many ART algorithms introducing clustering techniques (such as k-means Clustering) have been proposed to achieve an even spread of test cases. Though previous studies have demonstrated that ART with k-means clustering could achieve a good enhancement in testing effectiveness, k-means clustering is limited by the value of k, which will have a great impact on the test effectiveness. To improve the testing effectiveness of these techniques for object-oriented software, in this paper, we propose an approach named Determination Method of Optimal k-value based on the Experimental Process (DMOVk-EP) to determine the optimal k-value of k-means clustering and make the ART algorithms using k-means clustering technique achieve the best fault detection capability. The proposed method consists of two parts, one is a solution model for k based on the experimental process, and the other is an optimal k-value algorithm based on the presented model. We integrate this method with k-means clustering in ART and apply it to a set of open-source programs, with the experimental results showing that our approach obtains much more appropriate k, and also achieves much better testing effectiveness than other related methods.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Approach to Determine the Optimal k-Value of K-means Clustering in Adaptive Random Testing\",\"authors\":\"Jinfu Chen, Lingling Zhao, Minmin Zhou, Yisong Liu, Songling Qin\",\"doi\":\"10.1109/QRS51102.2020.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Random Testing (ART) aims at improving detection effectiveness by evenly distributing test cases over the whole input domain. Many ART algorithms introducing clustering techniques (such as k-means Clustering) have been proposed to achieve an even spread of test cases. Though previous studies have demonstrated that ART with k-means clustering could achieve a good enhancement in testing effectiveness, k-means clustering is limited by the value of k, which will have a great impact on the test effectiveness. To improve the testing effectiveness of these techniques for object-oriented software, in this paper, we propose an approach named Determination Method of Optimal k-value based on the Experimental Process (DMOVk-EP) to determine the optimal k-value of k-means clustering and make the ART algorithms using k-means clustering technique achieve the best fault detection capability. The proposed method consists of two parts, one is a solution model for k based on the experimental process, and the other is an optimal k-value algorithm based on the presented model. We integrate this method with k-means clustering in ART and apply it to a set of open-source programs, with the experimental results showing that our approach obtains much more appropriate k, and also achieves much better testing effectiveness than other related methods.\",\"PeriodicalId\":301814,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS51102.2020.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach to Determine the Optimal k-Value of K-means Clustering in Adaptive Random Testing
Adaptive Random Testing (ART) aims at improving detection effectiveness by evenly distributing test cases over the whole input domain. Many ART algorithms introducing clustering techniques (such as k-means Clustering) have been proposed to achieve an even spread of test cases. Though previous studies have demonstrated that ART with k-means clustering could achieve a good enhancement in testing effectiveness, k-means clustering is limited by the value of k, which will have a great impact on the test effectiveness. To improve the testing effectiveness of these techniques for object-oriented software, in this paper, we propose an approach named Determination Method of Optimal k-value based on the Experimental Process (DMOVk-EP) to determine the optimal k-value of k-means clustering and make the ART algorithms using k-means clustering technique achieve the best fault detection capability. The proposed method consists of two parts, one is a solution model for k based on the experimental process, and the other is an optimal k-value algorithm based on the presented model. We integrate this method with k-means clustering in ART and apply it to a set of open-source programs, with the experimental results showing that our approach obtains much more appropriate k, and also achieves much better testing effectiveness than other related methods.