社会网络中影响最大化模型的比较分析

Agash Uthayasuriyan, G. Hema Chandran, Uv Kavvin, Sabbineni Hema Mahitha, G. Jeyakumar
{"title":"社会网络中影响最大化模型的比较分析","authors":"Agash Uthayasuriyan, G. Hema Chandran, Uv Kavvin, Sabbineni Hema Mahitha, G. Jeyakumar","doi":"10.1109/InCACCT57535.2023.10141772","DOIUrl":null,"url":null,"abstract":"Influence Maximization (IM) models in social networks are used to find the most influential nodes present in the network to evaluate the information propagation caused by them, upon activation. Among the available models, three popular models: Greedy, Cost Effective Lazy Forward (CELF) and CELF++ have gained researchers’ attention due to their efficiency and effectiveness. This research aims to perform a comparative analysis of the performance of these models on various real-world social and complex networks. The results reveal that CELF++ could solve the IM problem more effectively than the other two algorithms. The obtained inferences along with the limitations are presented in this paper.","PeriodicalId":405272,"journal":{"name":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","volume":"922 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis on Influence Maximization Models in Social Networks\",\"authors\":\"Agash Uthayasuriyan, G. Hema Chandran, Uv Kavvin, Sabbineni Hema Mahitha, G. Jeyakumar\",\"doi\":\"10.1109/InCACCT57535.2023.10141772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influence Maximization (IM) models in social networks are used to find the most influential nodes present in the network to evaluate the information propagation caused by them, upon activation. Among the available models, three popular models: Greedy, Cost Effective Lazy Forward (CELF) and CELF++ have gained researchers’ attention due to their efficiency and effectiveness. This research aims to perform a comparative analysis of the performance of these models on various real-world social and complex networks. The results reveal that CELF++ could solve the IM problem more effectively than the other two algorithms. The obtained inferences along with the limitations are presented in this paper.\",\"PeriodicalId\":405272,\"journal\":{\"name\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"volume\":\"922 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InCACCT57535.2023.10141772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InCACCT57535.2023.10141772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交网络中的影响最大化(IM)模型用于寻找网络中存在的最具影响力的节点,以评估它们在激活后引起的信息传播。在现有的模型中,有三种比较流行的模型:Greedy、Cost Effective Lazy Forward (CELF)和celf++,由于它们的效率和有效性而受到了研究者的关注。本研究旨在对这些模型在各种现实社会和复杂网络上的性能进行比较分析。结果表明,与其他两种算法相比,celf++能够更有效地解决IM问题。本文给出了所得结论和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Analysis on Influence Maximization Models in Social Networks
Influence Maximization (IM) models in social networks are used to find the most influential nodes present in the network to evaluate the information propagation caused by them, upon activation. Among the available models, three popular models: Greedy, Cost Effective Lazy Forward (CELF) and CELF++ have gained researchers’ attention due to their efficiency and effectiveness. This research aims to perform a comparative analysis of the performance of these models on various real-world social and complex networks. The results reveal that CELF++ could solve the IM problem more effectively than the other two algorithms. The obtained inferences along with the limitations are presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信