具有Ostrowski间隙的Faber级数

D. Mayenberger, J. Müller
{"title":"具有Ostrowski间隙的Faber级数","authors":"D. Mayenberger, J. Müller","doi":"10.1080/02781070412331332517","DOIUrl":null,"url":null,"abstract":"Let G be a simply connected domain in the complex plane. For a function f holomorphic in G, Faber expansions with respect to appropriate compact subsets of G are considered. It is shown that if f has so-called Ostrowski gaps with respect to one such compact set, then certain subsequences of the partial sums with respect to different compact sets have an equiconvergence property. This implies that the Ostrowski gap structure is shared by all Faber expansions of f. Moreover, it is shown that the equiconvergence property has some implications for universal Faber series. Corresponding (known) results for Taylor series are obtained as special cases.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Faber series with Ostrowski gaps\",\"authors\":\"D. Mayenberger, J. Müller\",\"doi\":\"10.1080/02781070412331332517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simply connected domain in the complex plane. For a function f holomorphic in G, Faber expansions with respect to appropriate compact subsets of G are considered. It is shown that if f has so-called Ostrowski gaps with respect to one such compact set, then certain subsequences of the partial sums with respect to different compact sets have an equiconvergence property. This implies that the Ostrowski gap structure is shared by all Faber expansions of f. Moreover, it is shown that the equiconvergence property has some implications for universal Faber series. Corresponding (known) results for Taylor series are obtained as special cases.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070412331332517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070412331332517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

设G是复平面上的单连通定义域。对于G中的全纯函数,研究了G的适当紧子集上的Faber展开式。证明了如果f对于其中一个紧集具有所谓的Ostrowski间隙,则部分和对于不同紧集的某些子序列具有等收敛性。这表明Ostrowski隙结构为f的所有Faber展开式所共有。此外,还证明了该等收敛性质对普适Faber级数具有一定的意义。作为特殊情况,得到了泰勒级数的相应(已知)结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faber series with Ostrowski gaps
Let G be a simply connected domain in the complex plane. For a function f holomorphic in G, Faber expansions with respect to appropriate compact subsets of G are considered. It is shown that if f has so-called Ostrowski gaps with respect to one such compact set, then certain subsequences of the partial sums with respect to different compact sets have an equiconvergence property. This implies that the Ostrowski gap structure is shared by all Faber expansions of f. Moreover, it is shown that the equiconvergence property has some implications for universal Faber series. Corresponding (known) results for Taylor series are obtained as special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信