百亿亿次计算机辅助动力装置的设计与分析

T. Vijayaraghavan, Yasuko Eckert, G. Loh, M. Schulte, Mike Ignatowski, Bradford M. Beckmann, W. Brantley, J. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh R. Meswani, Indrani Paul, Matthew Poremba, Steven E. Raasch, S. Reinhardt, G. Sadowski, Vilas Sridharan
{"title":"百亿亿次计算机辅助动力装置的设计与分析","authors":"T. Vijayaraghavan, Yasuko Eckert, G. Loh, M. Schulte, Mike Ignatowski, Bradford M. Beckmann, W. Brantley, J. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh R. Meswani, Indrani Paul, Matthew Poremba, Steven E. Raasch, S. Reinhardt, G. Sadowski, Vilas Sridharan","doi":"10.1109/HPCA.2017.42","DOIUrl":null,"url":null,"abstract":"The challenges to push computing to exaflop levels are difficult given desired targets for memory capacity, memory bandwidth, power efficiency, reliability, and cost. This paper presents a vision for an architecture that can be used to construct exascale systems. We describe a conceptual Exascale Node Architecture (ENA), which is the computational building block for an exascale supercomputer. The ENA consists of an Exascale Heterogeneous Processor (EHP) coupled with an advanced memory system. The EHP provides a high-performance accelerated processing unit (CPU+GPU), in-package high-bandwidth 3D memory, and aggressive use of die-stacking and chiplet technologies to meet the requirements for exascale computing in a balanced manner. We present initial experimental analysis to demonstrate the promise of our approach, and we discuss remaining open research challenges for the community.","PeriodicalId":118950,"journal":{"name":"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Design and Analysis of an APU for Exascale Computing\",\"authors\":\"T. Vijayaraghavan, Yasuko Eckert, G. Loh, M. Schulte, Mike Ignatowski, Bradford M. Beckmann, W. Brantley, J. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh R. Meswani, Indrani Paul, Matthew Poremba, Steven E. Raasch, S. Reinhardt, G. Sadowski, Vilas Sridharan\",\"doi\":\"10.1109/HPCA.2017.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenges to push computing to exaflop levels are difficult given desired targets for memory capacity, memory bandwidth, power efficiency, reliability, and cost. This paper presents a vision for an architecture that can be used to construct exascale systems. We describe a conceptual Exascale Node Architecture (ENA), which is the computational building block for an exascale supercomputer. The ENA consists of an Exascale Heterogeneous Processor (EHP) coupled with an advanced memory system. The EHP provides a high-performance accelerated processing unit (CPU+GPU), in-package high-bandwidth 3D memory, and aggressive use of die-stacking and chiplet technologies to meet the requirements for exascale computing in a balanced manner. We present initial experimental analysis to demonstrate the promise of our approach, and we discuss remaining open research challenges for the community.\",\"PeriodicalId\":118950,\"journal\":{\"name\":\"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2017.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2017.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

考虑到内存容量、内存带宽、电源效率、可靠性和成本等预期目标,将计算推进到exaflop级别的挑战是困难的。本文提出了一种可用于构建百亿亿级系统的体系结构。我们描述了一个概念性的Exascale节点架构(ENA),它是Exascale超级计算机的计算构建块。ENA由一个Exascale异构处理器(EHP)和一个先进的存储系统组成。EHP提供高性能加速处理单元(CPU+GPU),封装内高带宽3D存储器,以及积极使用芯片堆叠和芯片技术,以平衡的方式满足百亿亿次计算的要求。我们提出了初步的实验分析,以证明我们的方法的承诺,我们讨论了社区仍然开放的研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Analysis of an APU for Exascale Computing
The challenges to push computing to exaflop levels are difficult given desired targets for memory capacity, memory bandwidth, power efficiency, reliability, and cost. This paper presents a vision for an architecture that can be used to construct exascale systems. We describe a conceptual Exascale Node Architecture (ENA), which is the computational building block for an exascale supercomputer. The ENA consists of an Exascale Heterogeneous Processor (EHP) coupled with an advanced memory system. The EHP provides a high-performance accelerated processing unit (CPU+GPU), in-package high-bandwidth 3D memory, and aggressive use of die-stacking and chiplet technologies to meet the requirements for exascale computing in a balanced manner. We present initial experimental analysis to demonstrate the promise of our approach, and we discuss remaining open research challenges for the community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信