基于增强的分类器集成特征选择方法

K. Vale, Antonino Feitosa Neto, A. Canuto
{"title":"基于增强的分类器集成特征选择方法","authors":"K. Vale, Antonino Feitosa Neto, A. Canuto","doi":"10.1109/HIS.2010.5600015","DOIUrl":null,"url":null,"abstract":"In the design of Classifier Ensembles, diversity is considered as one of the main aspects to be taken into account, since there is no gain in combining identical classification methods. One way of increasing diversity is to use feature selection methods in order to select subsets of attributes for the individual classifiers. In this paper, it is investigated the use of a simple reinforcement-based method, called ReinSel, in ensemble systems. More specifically, it is aimed to evaluate the capability of this method to select the correct attributes of a dataset, avoiding unimportant and noisy attributes.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using a reinforcement-based feature selection method in Classifier Ensemble\",\"authors\":\"K. Vale, Antonino Feitosa Neto, A. Canuto\",\"doi\":\"10.1109/HIS.2010.5600015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the design of Classifier Ensembles, diversity is considered as one of the main aspects to be taken into account, since there is no gain in combining identical classification methods. One way of increasing diversity is to use feature selection methods in order to select subsets of attributes for the individual classifiers. In this paper, it is investigated the use of a simple reinforcement-based method, called ReinSel, in ensemble systems. More specifically, it is aimed to evaluate the capability of this method to select the correct attributes of a dataset, avoiding unimportant and noisy attributes.\",\"PeriodicalId\":174618,\"journal\":{\"name\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2010.5600015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5600015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在分类器集成的设计中,多样性被认为是需要考虑的主要方面之一,因为组合相同的分类方法没有好处。增加多样性的一种方法是使用特征选择方法,以便为单个分类器选择属性子集。本文研究了在集成系统中使用一种简单的基于增强的方法,称为ReinSel。更具体地说,它旨在评估该方法选择数据集正确属性的能力,避免不重要和有噪声的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using a reinforcement-based feature selection method in Classifier Ensemble
In the design of Classifier Ensembles, diversity is considered as one of the main aspects to be taken into account, since there is no gain in combining identical classification methods. One way of increasing diversity is to use feature selection methods in order to select subsets of attributes for the individual classifiers. In this paper, it is investigated the use of a simple reinforcement-based method, called ReinSel, in ensemble systems. More specifically, it is aimed to evaluate the capability of this method to select the correct attributes of a dataset, avoiding unimportant and noisy attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信