情感分析中识别机器学习和特征提取方法的文献分析

Markus Haberzettl, B. Markscheffel
{"title":"情感分析中识别机器学习和特征提取方法的文献分析","authors":"Markus Haberzettl, B. Markscheffel","doi":"10.1109/ICDIM.2018.8846980","DOIUrl":null,"url":null,"abstract":"The increase in daily emails sent to the customer service of companies is creating new challenges. Sentiment analysis, i.e. the automated recognition of mood and polarity in texts, is a solution to this problem, but the sentiment analysis of German emails is still an open research problem. With the help of a literature analysis we identify and analyze the most relevant machine learning methods and the corresponding feature extraction methods.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Literature Analysis for the Identification of Machine Learning and Feature Extraction Methods for Sentiment Analysis\",\"authors\":\"Markus Haberzettl, B. Markscheffel\",\"doi\":\"10.1109/ICDIM.2018.8846980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in daily emails sent to the customer service of companies is creating new challenges. Sentiment analysis, i.e. the automated recognition of mood and polarity in texts, is a solution to this problem, but the sentiment analysis of German emails is still an open research problem. With the help of a literature analysis we identify and analyze the most relevant machine learning methods and the corresponding feature extraction methods.\",\"PeriodicalId\":120884,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2018.8846980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8846980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

公司客户服务部门每天收到的电子邮件越来越多,这带来了新的挑战。情感分析,即文本中情绪和极性的自动识别,是解决这一问题的一种方法,但对德国电子邮件的情感分析仍然是一个开放的研究问题。在文献分析的帮助下,我们识别和分析了最相关的机器学习方法和相应的特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Literature Analysis for the Identification of Machine Learning and Feature Extraction Methods for Sentiment Analysis
The increase in daily emails sent to the customer service of companies is creating new challenges. Sentiment analysis, i.e. the automated recognition of mood and polarity in texts, is a solution to this problem, but the sentiment analysis of German emails is still an open research problem. With the help of a literature analysis we identify and analyze the most relevant machine learning methods and the corresponding feature extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信