引力、量子力学和最小作用电磁平衡态

A. Michaud
{"title":"引力、量子力学和最小作用电磁平衡态","authors":"A. Michaud","doi":"10.4172/2329-6542.1000152","DOIUrl":null,"url":null,"abstract":"The century old challenge of fundamental physics has been to reconcile quantum mechanics (QM) that deals with submicroscopic interactions between elementary particles from the quantization perspective, with relativistic mechanics that deals with gravitation at the macroscopic level from the infinitesimally progressive perspective, mainly embodied by the theory of general relativity (GR). The ease with which infinitesimally progressive sequences of motion can be mathematically represented by means of an indefinite number of instantaneous momentary excited states of a postulated underlying neutral energy quantum vacuum field, which is the foundation of quantum field theory (QFT), has naturally privileged this quantization perspective in all past attempts at reconciling QM with gravitation. But, given that all scatterable elementary particles identifiable within atomic structures have an electrical charge, and are thus electromagnetic in nature, this article explores the possibility of reconciling quantum mechanics with relativistic mechanics from the electromagnetic perspective, by means of reconciling the wave function with the least action electromagnetic resonance states into which elementary charged particles become captive within atomic and nuclear structures, and ultimately, with gravitation.","PeriodicalId":276468,"journal":{"name":"Prime Archives in Space Research","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitation, Quantum Mechanics and the Least Action Electromagnetic Equilibrium States\",\"authors\":\"A. Michaud\",\"doi\":\"10.4172/2329-6542.1000152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The century old challenge of fundamental physics has been to reconcile quantum mechanics (QM) that deals with submicroscopic interactions between elementary particles from the quantization perspective, with relativistic mechanics that deals with gravitation at the macroscopic level from the infinitesimally progressive perspective, mainly embodied by the theory of general relativity (GR). The ease with which infinitesimally progressive sequences of motion can be mathematically represented by means of an indefinite number of instantaneous momentary excited states of a postulated underlying neutral energy quantum vacuum field, which is the foundation of quantum field theory (QFT), has naturally privileged this quantization perspective in all past attempts at reconciling QM with gravitation. But, given that all scatterable elementary particles identifiable within atomic structures have an electrical charge, and are thus electromagnetic in nature, this article explores the possibility of reconciling quantum mechanics with relativistic mechanics from the electromagnetic perspective, by means of reconciling the wave function with the least action electromagnetic resonance states into which elementary charged particles become captive within atomic and nuclear structures, and ultimately, with gravitation.\",\"PeriodicalId\":276468,\"journal\":{\"name\":\"Prime Archives in Space Research\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prime Archives in Space Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-6542.1000152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prime Archives in Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-6542.1000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基础物理学的百年挑战是调和量子力学(QM)和相对论力学(主要体现在广义相对论(GR)),前者从量子化的角度研究基本粒子之间的亚微观相互作用,后者从无限渐进的角度研究宏观层面的引力。无限小的渐进运动序列可以通过假定的潜在中性能量量子真空场的无限数量的瞬时激发态在数学上表示出来,这是量子场论(QFT)的基础,在过去所有调和量子场论与引力的尝试中,这种量子化观点自然得到了特权。但是,考虑到原子结构中所有可识别的散射基本粒子都具有电荷,因此本质上是电磁的,本文探索了从电磁角度调和量子力学与相对论力学的可能性,通过调和波函数与最小作用的电磁共振态,基本带电粒子在原子和核结构中成为俘虏。最后是万有引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gravitation, Quantum Mechanics and the Least Action Electromagnetic Equilibrium States
The century old challenge of fundamental physics has been to reconcile quantum mechanics (QM) that deals with submicroscopic interactions between elementary particles from the quantization perspective, with relativistic mechanics that deals with gravitation at the macroscopic level from the infinitesimally progressive perspective, mainly embodied by the theory of general relativity (GR). The ease with which infinitesimally progressive sequences of motion can be mathematically represented by means of an indefinite number of instantaneous momentary excited states of a postulated underlying neutral energy quantum vacuum field, which is the foundation of quantum field theory (QFT), has naturally privileged this quantization perspective in all past attempts at reconciling QM with gravitation. But, given that all scatterable elementary particles identifiable within atomic structures have an electrical charge, and are thus electromagnetic in nature, this article explores the possibility of reconciling quantum mechanics with relativistic mechanics from the electromagnetic perspective, by means of reconciling the wave function with the least action electromagnetic resonance states into which elementary charged particles become captive within atomic and nuclear structures, and ultimately, with gravitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信