SCO2燃煤电厂余热回收系统的热经济优化

Ruiqiang Sun, Kaixuan Yang, Ming Liu, Junjie Yan
{"title":"SCO2燃煤电厂余热回收系统的热经济优化","authors":"Ruiqiang Sun, Kaixuan Yang, Ming Liu, Junjie Yan","doi":"10.1115/power2020-16271","DOIUrl":null,"url":null,"abstract":"\n The temperature of SCO2 fed to the boiler in SCO2 coal-fired power plants is relatively high, ∼500 °C. It leads to high boiler exhaust temperature, which is ∼120 °C according to previous studies. Waste heat recovery from low temperature fluegas in SCO2 coal-fired power plants is a key issue to be addressed to enhance power plant efficiency and electrostatic precipitator performance. Therefore, systems of waste heat recovery from low-temperature fluegas were proposed in this study. To evaluate the economic performances of the proposed systems and obtain the best system configurations, economic and thermodynamic models were developed. Moreover, multi-parameter optimization model based on Genetic Algorithm was developed. The waste heat recovery system is proposed and optimized by considering coupling and matching of the air preheating process, heat regenerative process and fluegas cooling process. With a 1000MW SCO2 coal-fired power plant as the reference case, thermodynamic and economic analyses were carried out. Results show that when the low temperature economizer is integrated together with the main compressor intercooling and flue bypass ahead the air-preheater, the temperature of exhaust fluegas can be decreased to ∼95 °C and the power plant efficiency can be enhanced by 1.39%-pts compared with basic system. Through the economic model analysis, the system levelized cost of electricity is 0.04158 $ kW−1 h−1.","PeriodicalId":282703,"journal":{"name":"ASME 2020 Power Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermo-Economic Optimization on the Waste Heat Recovery System of SCO2 Coal-Fired Power Plants\",\"authors\":\"Ruiqiang Sun, Kaixuan Yang, Ming Liu, Junjie Yan\",\"doi\":\"10.1115/power2020-16271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The temperature of SCO2 fed to the boiler in SCO2 coal-fired power plants is relatively high, ∼500 °C. It leads to high boiler exhaust temperature, which is ∼120 °C according to previous studies. Waste heat recovery from low temperature fluegas in SCO2 coal-fired power plants is a key issue to be addressed to enhance power plant efficiency and electrostatic precipitator performance. Therefore, systems of waste heat recovery from low-temperature fluegas were proposed in this study. To evaluate the economic performances of the proposed systems and obtain the best system configurations, economic and thermodynamic models were developed. Moreover, multi-parameter optimization model based on Genetic Algorithm was developed. The waste heat recovery system is proposed and optimized by considering coupling and matching of the air preheating process, heat regenerative process and fluegas cooling process. With a 1000MW SCO2 coal-fired power plant as the reference case, thermodynamic and economic analyses were carried out. Results show that when the low temperature economizer is integrated together with the main compressor intercooling and flue bypass ahead the air-preheater, the temperature of exhaust fluegas can be decreased to ∼95 °C and the power plant efficiency can be enhanced by 1.39%-pts compared with basic system. Through the economic model analysis, the system levelized cost of electricity is 0.04158 $ kW−1 h−1.\",\"PeriodicalId\":282703,\"journal\":{\"name\":\"ASME 2020 Power Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2020-16271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2020-16271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在二氧化碳燃煤电厂中,进入锅炉的二氧化碳温度相对较高,约为500℃。这导致锅炉排气温度很高,根据以往的研究,其温度为~ 120°C。SCO2燃煤电厂低温烟气余热回收是提高电厂效率和电除尘器性能的关键问题。因此,本研究提出了低温烟气余热回收系统。为了评估所提出系统的经济性能并获得最佳系统配置,建立了经济和热力学模型。建立了基于遗传算法的多参数优化模型。考虑空气预热过程、蓄热过程和烟气冷却过程的耦合匹配,提出并优化了余热回收系统。以某1000MW燃煤电厂为例,进行了热力和经济分析。结果表明,低温省煤器与主压气机中间冷却和空气预热器前烟道旁通集成后,废气温度可降低至~ 95℃,电厂效率较基本系统提高1.39%。经经济模型分析,系统平准化用电成本为0.04158美元kW−1 h−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-Economic Optimization on the Waste Heat Recovery System of SCO2 Coal-Fired Power Plants
The temperature of SCO2 fed to the boiler in SCO2 coal-fired power plants is relatively high, ∼500 °C. It leads to high boiler exhaust temperature, which is ∼120 °C according to previous studies. Waste heat recovery from low temperature fluegas in SCO2 coal-fired power plants is a key issue to be addressed to enhance power plant efficiency and electrostatic precipitator performance. Therefore, systems of waste heat recovery from low-temperature fluegas were proposed in this study. To evaluate the economic performances of the proposed systems and obtain the best system configurations, economic and thermodynamic models were developed. Moreover, multi-parameter optimization model based on Genetic Algorithm was developed. The waste heat recovery system is proposed and optimized by considering coupling and matching of the air preheating process, heat regenerative process and fluegas cooling process. With a 1000MW SCO2 coal-fired power plant as the reference case, thermodynamic and economic analyses were carried out. Results show that when the low temperature economizer is integrated together with the main compressor intercooling and flue bypass ahead the air-preheater, the temperature of exhaust fluegas can be decreased to ∼95 °C and the power plant efficiency can be enhanced by 1.39%-pts compared with basic system. Through the economic model analysis, the system levelized cost of electricity is 0.04158 $ kW−1 h−1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信