MultiAspectEmo:多语言和语言不可知论的基于方面的情感分析

Joanna Szolomicka, Jan Kocoń
{"title":"MultiAspectEmo:多语言和语言不可知论的基于方面的情感分析","authors":"Joanna Szolomicka, Jan Kocoń","doi":"10.1109/ICDMW58026.2022.00065","DOIUrl":null,"url":null,"abstract":"The paper addresses the important problem of multilingual and language-agnostic approaches to the aspect-based sentiment analysis (ABSA) task, using modern approaches based on transformer models. We propose a new dataset based on automatic translation of the Polish AspectEmo dataset together with cross-lingual transfer of tags describing aspect polarity. The result is a MultiAspectEmo dataset translated into five other languages: English, Czech, Spanish, French and Dutch. In this paper, we also present the original Tr Asp (Transformer-based Aspect Extraction and Classification) method, which is significantly better than methods from the literature in the ABSA task. In addition, we present multilingual and language-agnostic variants of this method, evaluated on the MultiAspectEmo and also the SemEval2016 datasets. We also test various language models for the ABSA task, including compressed models that give promising results while significantly reducing inference time and memory usage.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MultiAspectEmo: Multilingual and Language-Agnostic Aspect-Based Sentiment Analysis\",\"authors\":\"Joanna Szolomicka, Jan Kocoń\",\"doi\":\"10.1109/ICDMW58026.2022.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the important problem of multilingual and language-agnostic approaches to the aspect-based sentiment analysis (ABSA) task, using modern approaches based on transformer models. We propose a new dataset based on automatic translation of the Polish AspectEmo dataset together with cross-lingual transfer of tags describing aspect polarity. The result is a MultiAspectEmo dataset translated into five other languages: English, Czech, Spanish, French and Dutch. In this paper, we also present the original Tr Asp (Transformer-based Aspect Extraction and Classification) method, which is significantly better than methods from the literature in the ABSA task. In addition, we present multilingual and language-agnostic variants of this method, evaluated on the MultiAspectEmo and also the SemEval2016 datasets. We also test various language models for the ABSA task, including compressed models that give promising results while significantly reducing inference time and memory usage.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用基于转换模型的现代方法,解决了基于方面的情感分析(ABSA)任务的多语言和语言不可知论方法的重要问题。我们提出了一个基于波兰语AspectEmo数据集的自动翻译和描述方面极性标签的跨语言迁移的新数据集。结果是将MultiAspectEmo数据集翻译成其他五种语言:英语、捷克语、西班牙语、法语和荷兰语。在本文中,我们还提出了原始的Tr Asp(基于transformer的Aspect Extraction and Classification)方法,该方法在ABSA任务中明显优于文献中的方法。此外,我们提出了该方法的多语言和语言不确定变体,并在MultiAspectEmo和SemEval2016数据集上进行了评估。我们还为ABSA任务测试了各种语言模型,包括压缩模型,这些模型提供了有希望的结果,同时显著减少了推理时间和内存使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MultiAspectEmo: Multilingual and Language-Agnostic Aspect-Based Sentiment Analysis
The paper addresses the important problem of multilingual and language-agnostic approaches to the aspect-based sentiment analysis (ABSA) task, using modern approaches based on transformer models. We propose a new dataset based on automatic translation of the Polish AspectEmo dataset together with cross-lingual transfer of tags describing aspect polarity. The result is a MultiAspectEmo dataset translated into five other languages: English, Czech, Spanish, French and Dutch. In this paper, we also present the original Tr Asp (Transformer-based Aspect Extraction and Classification) method, which is significantly better than methods from the literature in the ABSA task. In addition, we present multilingual and language-agnostic variants of this method, evaluated on the MultiAspectEmo and also the SemEval2016 datasets. We also test various language models for the ABSA task, including compressed models that give promising results while significantly reducing inference time and memory usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信