大型动态网络的并行顶点颜色更新

A. Khanda, S. Bhowmick, Xin Liang, Sajal K. Das
{"title":"大型动态网络的并行顶点颜色更新","authors":"A. Khanda, S. Bhowmick, Xin Liang, Sajal K. Das","doi":"10.1109/HiPC56025.2022.00027","DOIUrl":null,"url":null,"abstract":"We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Vertex Color Update on Large Dynamic Networks\",\"authors\":\"A. Khanda, S. Bhowmick, Xin Liang, Sajal K. Das\",\"doi\":\"10.1109/HiPC56025.2022.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms.\",\"PeriodicalId\":119363,\"journal\":{\"name\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC56025.2022.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于gpu的并行算法,可以有效地更新大型动态网络上的顶点着色。对于单个GPU,我们引入了松散维护的顶点颜色更新的概念,减少了计算和内存需求。对于多个gpu,在分布式环境中,我们提出了基于优先级的顶点排序,以减少通信时间。我们证明了我们算法的正确性,并通过实验证明,对于单个GPU上超过1600万个顶点和超过1.34亿条边的图形,我们的动态算法比静态图形上最先进的算法快20倍。对于具有超过1.3亿个顶点和超过2.6亿个边的大型图形,我们使用8个gpu的分布式实现在160毫秒内生成更新的颜色分配。在所有情况下,所提出的并行算法产生的颜色与最先进的算法相当或更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Vertex Color Update on Large Dynamic Networks
We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信