二次型盲源分离创新

Zhenwei Shi, Zhanxing Zhu, X. Tan, Zhi-guo Jiang
{"title":"二次型盲源分离创新","authors":"Zhenwei Shi, Zhanxing Zhu, X. Tan, Zhi-guo Jiang","doi":"10.1109/ICNC.2009.328","DOIUrl":null,"url":null,"abstract":"This paper proposes a blind source separation (BSS) method based on the quadratic form innovation of original sources, which includes linear predictability and energy (square) predictability as special cases. A simple algorithm is presented by minimizing a loss function of the quadratic form innovation. Simulations by source signals with linear or square temporal autocorrelations verify the efficient implementation of the proposed method.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"12 31","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic Form Innovation to Blind Source Separation\",\"authors\":\"Zhenwei Shi, Zhanxing Zhu, X. Tan, Zhi-guo Jiang\",\"doi\":\"10.1109/ICNC.2009.328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a blind source separation (BSS) method based on the quadratic form innovation of original sources, which includes linear predictability and energy (square) predictability as special cases. A simple algorithm is presented by minimizing a loss function of the quadratic form innovation. Simulations by source signals with linear or square temporal autocorrelations verify the efficient implementation of the proposed method.\",\"PeriodicalId\":235382,\"journal\":{\"name\":\"2009 Fifth International Conference on Natural Computation\",\"volume\":\"12 31\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2009.328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于原始源二次型创新的盲源分离(BSS)方法,该方法以线性可预测性和能量(平方)可预测性为特例。通过最小化二次型创新的损失函数,提出了一种简单的算法。对具有线性或平方时间自相关的源信号进行仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic Form Innovation to Blind Source Separation
This paper proposes a blind source separation (BSS) method based on the quadratic form innovation of original sources, which includes linear predictability and energy (square) predictability as special cases. A simple algorithm is presented by minimizing a loss function of the quadratic form innovation. Simulations by source signals with linear or square temporal autocorrelations verify the efficient implementation of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信